【題目】如圖,D是△ABC內一點,BD⊥CD,E、F、G、H分別是邊AB、BD、CD、AC的中點.若AD=10,BD=8,CD=6,則四邊形EFGH的周長是( 。
A.24B.20C.12D.10
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從地出發(fā),沿同一路線駛向地.甲車先出發(fā)勻速駛向地,后乙出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時.由于滿載貨物,為了行駛安全,速度減少了,結果與甲車同時到達地,甲乙兩車距地的路程與乙車行駛時間之間的函數(shù)圖象如圖所示
(1)的值是________,甲的速度是________.
(2)求乙車距地的路程與之間的函數(shù)關系式;
(3)若甲乙兩車距離不超過時,車載通話機可以進行通話,則兩車在行駛過程中可以通話的總時長為多少小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(概念認識)
在同一個圓中兩條互相垂直且相等的弦定義為“等垂弦”,兩條弦所在直線的交點為等垂弦的分割點.如圖①,AB、CD是⊙O的弦,AB=CD,AB⊥CD,垂足為E,則AB、CD是等垂弦,E為等垂弦AB、CD的分割點.
(數(shù)學理解)
(1)如圖②,AB是⊙O的弦,作OC⊥OA、OD⊥OB,分別交⊙O于點C、D,連接CD.求證: AB、CD是⊙O的等垂弦.
(2)在⊙O中,⊙O的半徑為5,E為等垂弦AB、CD的分割點,.求AB的長度.
(問題解決)
(3)AB、CD是⊙O的兩條弦,CD=AB,且CD⊥AB,垂足為F.
①在圖③中,利用直尺和圓規(guī)作弦CD(保留作圖痕跡,不寫作法).
②若⊙O的半徑為r,AB=mr(m為常數(shù)),垂足F與⊙O的位置關系隨m的值變化而變化,直接寫出點F與⊙O的位置關系及對應的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兒童用藥的劑量常常按他們的體重來計算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內時,每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實中,該藥品每次實際服用量可以比每次正常服用略高一些,但不能超過正常服用量的1.2倍,否則會對兒童的身體造成較大損害.
(1)求與之間的函數(shù)關系式,并寫出自變量的取值范圍;
(2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時可以一次服下一袋藥?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工廠甲、乙兩個部門各有員工400人,為了解這兩個部門員工的生產技能情況,進行了抽樣調查,請將下列過程補充完整:
收集數(shù)據(jù):
從甲、乙兩個部門各隨機抽取20名員工,進行了生產技能測試,測試成績(百分制)如下:
整理、描述數(shù)據(jù):
按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):
成績 人數(shù) 部門 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說明:成績80分及以上為生產技能優(yōu)秀,70—79分為生產技能良好,60—69分為生產技能合格,60分以下為生產技能不合格)
分析數(shù)據(jù):
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | |
乙 | 78 | 81 |
得出結論:
.估計乙部門生產技能優(yōu)秀的員工人數(shù)約為 .
.可以推斷出 部門員工的生產技能水平高.理由為 .
(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD的對角線相交于點O.DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的而積為,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種水果按照果徑大小可分為4個等級:標準果、優(yōu)質果、精品果、禮品果,某采購商從采購的一批該種水果中隨機抽取100個,利用它的等級分類標準得到的數(shù)據(jù)如下:
等級 | 標準果 | 優(yōu)質果 | 精品果 | 禮品果 |
個數(shù) | 10 | 30 | 40 | 20 |
用樣本估計總體,果園老板提出兩種購銷方案給采購商參考,
方案1:不分類賣出,售價為20元/個;
方案2:分類賣出,分類后的水果售價如下:
等級 | 標準果 | 優(yōu)質果 | 精品果 | 禮品果 |
售價(元/個) | 16 | 18 | 22 | 24 |
(1)從采購商的角度考慮,應該采用哪種購銷方案?
(2)若采購商采購的該種水果的進價不超過20元/個,則采購商可以獲利,現(xiàn)從這種水果的4個等級中任選2種,按方案2進行購買,求這2種等級的水果至少有一種能使采購商獲利的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P和圖形N,給出如下定義:如果Q為圖形N上一個動點,P,Q兩點間距離的最大值為dmax,P,Q兩點間距離的最小值為dmin,我們把dmax + dmin的值叫點P和圖形N間的“和距離”,記作d(P,圖形N).
(1)如圖,正方形ABCD的中心為點O,A(3,3).
① 點O到線段AB的“和距離”d(O,線段AB)= ;
② 設該正方形與y軸交于點E和F,點P在線段EF上,d(P,正方形ABCD)=7,求點P的坐標.
(2)如圖2,在(1)的條件下,過C,D兩點作射線CD,連接AC,點M是射線CD上的一點,如果d(M,線段AD),直接寫出M點橫坐標t取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形ABCD沿對角線BD翻折,點A落在點A′處,AD交BC于點E,點F在CD上,連接EF,且CE=3CF,如圖1.
(1)試判斷△BDE的形狀,并說明理由;
(2)若∠DEF=45°,求tan∠CDE的值;
(3)在(2)的條件下,點G在BD上,且不與B、D兩點重合,連接EG并延長到點H,使得EH=BE,連接BH、DH,將△BDH沿DH翻折,點B的對應點B′恰好落在EH的延長線上,如圖2.當BH=8時,求GH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com