【題目】(12分)如圖,在直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)A在x軸上,OA=4,AB=3.動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,沿AO向終點(diǎn)O移動(dòng);同時(shí)點(diǎn)N從點(diǎn)O出發(fā),以每秒1.25個(gè)單位長(zhǎng)度的速度,沿OB向終點(diǎn)B移動(dòng).當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了x秒(0<x<4)時(shí),解答下列問(wèn)題:
(1)求點(diǎn)N的坐標(biāo)(用含x的代數(shù)式表示);
(2)設(shè)△OMN的面積是S,求S與x之間的函數(shù)表達(dá)式;當(dāng)x為何值時(shí),S有最大值?最大值是多少?
(3)在兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(x, );
(2)當(dāng)x=2時(shí),S有最大值,最大值是;
(3)x的值是2秒或秒.
【解析】試題(1)由勾股定理求出OB,作NP⊥OA于P,則NP∥AB,得出△OPN∽△OAB,得出比例式,求出OP、PN,即可得出點(diǎn)N的坐標(biāo);
(2)由三角形的面積公式得出S是x的二次函數(shù),即可得出S的最大值;
(3)分兩種情況:①若∠OMN=90°,則MN∥AB,由平行線得出△OMN∽△OAB,得出比例式,即可求出x的值;
②若∠ONM=90°,則∠ONM=∠OAB,證出△OMN∽△OBA,得出比例式,求出x的值即可.
試題解析:解:(1)根據(jù)題意得:MA=x,ON=1.25x,
在Rt△OAB中,由勾股定理得:OB==5,
作NP⊥OA于P,如圖1所示:
則NP∥AB,
∴△OPN∽△OAB,
∴,
即,
解得:OP=x,PN= ,
∴點(diǎn)N的坐標(biāo)是(x, );
(2)在△OMN中,OM=4﹣x,OM邊上的高PN= ,
∴S=OMPN=(4﹣x) =﹣ +x,
∴S與x之間的函數(shù)表達(dá)式為S=﹣ +x(0<x<4),
配方得:S=﹣ +,
∵﹣<0,
∴S有最大值,
當(dāng)x=2時(shí),S有最大值,最大值是;
(3)存在某一時(shí)刻,使△OMN是直角三角形,理由如下:
分兩種情況:①若∠OMN=90°,如圖2所示:
則MN∥AB,
此時(shí)OM=4﹣x,ON=1.25x,
∵M(jìn)N∥AB,
∴△OMN∽△OAB,
∴,
即,
解得:x=2;
②若∠ONM=90°,如圖3所示:
則∠ONM=∠OAB,
此時(shí)OM=4﹣x,ON=1.25x,
∵∠ONM=∠OAB,∠MON=∠BOA,
∴△OMN∽△OBA,
∴,
即,
解得:x=;
綜上所述:x的值是2秒或秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)D坐標(biāo),并直接寫(xiě)出y1>y2時(shí)x的取值范圍;
(3)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度).
(1)作出△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的△A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);
(2)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,并直接寫(xiě)出B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
(1)當(dāng)銷售單價(jià)為70元時(shí),每天的銷售利潤(rùn)是多少?
(2)求出每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)如果該企業(yè)每天的總成本不超過(guò)7000元,那么銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示,將△ABC沿y軸翻折得到△A1B1C1,再將△A1B1C1繞點(diǎn)O旋轉(zhuǎn)180°得到△A2B2C2;已知A(﹣1,4),B(﹣2,2),C(0,1)
(1)請(qǐng)依次畫(huà)出△A1B1C1和△A2B2C2;
(2)若直線A1B2與一個(gè)反比例函數(shù)圖象在第一象限交于點(diǎn)A1,試求直線A1B2和這個(gè)反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可售出20件,每件贏利40元,為了擴(kuò)大銷售,增加贏利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件.求:
(1)若商場(chǎng)平均每天要贏利1200元,每件襯衫應(yīng)降價(jià)多少元?
(2)每件襯衫降價(jià)多少元時(shí),商場(chǎng)平均每天贏利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一動(dòng)點(diǎn)從半徑為2的⊙O上的A0點(diǎn)出發(fā),沿著射線A0O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A1處,再向左沿著與射線A1O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A2處;接著又從A2點(diǎn)出發(fā),沿著射線A2O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A3處,再向左沿著與射線A3O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A4處;A4A0間的距離是_____;…按此規(guī)律運(yùn)動(dòng)到點(diǎn)A2019處,則點(diǎn)A2019與點(diǎn)A0間的距離是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,菱形 ABCD 的邊 AD∥x 軸,直線y=2x+b 與 x 軸交于點(diǎn) B,與反比例函數(shù) y=(k>0)圖象交于點(diǎn) D 和點(diǎn) E,OB=3,OA=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn) P 為線段 BE 上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn) P 作 x 軸的平行線,當(dāng)△CDE 被這條平行線分成面積相等的兩部分時(shí),求點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把△PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,過(guò)點(diǎn)B作BE⊥CG,垂足為E且在AD上,BE交PC于點(diǎn)F.
(1)如圖1,若點(diǎn)E是AD的中點(diǎn),求證:△AEB≌△DEC;
(2)如圖2,①求證:BP=BF;
②當(dāng)AD=25,且AE<DE時(shí),求cos∠PCB的值;
③當(dāng)BP=9時(shí),求BEEF的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com