【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))

1)將ABC向左平移1個(gè)單位,再向上平移5個(gè)單位件到A1B1C1請畫出A1B1C1

2)請?jiān)诰W(wǎng)格中將ABCA為位似中心放大3倍,得AB2C2,請畫出AB2C2

3A1B1C1AB2C2的面積比為   

【答案】1)見解析;(2)見解析;(3

【解析】

1)利用平移的性質(zhì)分別得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;

2)利用位似變換的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;

3)根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

解:(1)如圖所示:A1B1C1,即為所求;

2)如圖所示:AB2C2,即為所求;

3)∵將ABC向左平移1個(gè)單位,再向上平移5個(gè)單位件到A1B1C1,

∴△ABC≌△A1B1C1

∵△ABC∽△AB2C2,

∴△A1B1C1AB2C2的面積比為:,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市市民上班時(shí)常用交通工具的狀況,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如圖所示的尚不完整的統(tǒng)計(jì)圖:

根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:

1)本次接受調(diào)查的市民共有  人;

2)扇形統(tǒng)計(jì)圖中,扇形B的圓心角度數(shù)是  ;

3)請補(bǔ)全條形統(tǒng)計(jì)圖;

4)若該市“上班族”約有15萬人,請估計(jì)乘公交車上班的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB是半圓O的直徑,正方形OPNM的對(duì)角線ONAB垂直且相等,QOP的中點(diǎn).一只機(jī)器甲蟲從點(diǎn)A出發(fā)勻速爬行,它先沿直徑爬到點(diǎn)B,再沿半圓爬回到點(diǎn)A,一臺(tái)微型記錄儀記錄了甲蟲的爬行過程.設(shè)甲蟲爬行的時(shí)間為t,甲蟲與微型記錄儀之間的距離為y,表示yt的函數(shù)關(guān)系的圖象如圖2所示,那么微型記錄儀可能位于圖1中的( )

A.點(diǎn)MB.點(diǎn)NC.點(diǎn)PD.點(diǎn)Q

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知拋物線的對(duì)稱軸是直線x=3,且與x軸相交于A,B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè))與y軸交于C點(diǎn) .

(1)求拋物線的解析式和A、B兩點(diǎn)的坐標(biāo);

(2)若點(diǎn)P是拋物線上B、C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)(不與B、C重合),則是否存在一點(diǎn)P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;

(3)若M是拋物線上任意一點(diǎn),過點(diǎn)M作y軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN=3時(shí),求M點(diǎn)的坐標(biāo) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,DEBC,ADE和梯形DBCE的面積相等,則ADDB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程 (m-1)x-mx+1=0。

1)證明:不論m為何值時(shí),方程總有實(shí)數(shù)根;

2)若m為整數(shù),當(dāng)m為何值時(shí),方程有兩個(gè)不相等的整數(shù)根。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣kx+m與雙曲線yx0)交于A、B兩點(diǎn),點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B的縱坐標(biāo)為2,點(diǎn)Py軸上一動(dòng)點(diǎn),當(dāng)△PAB的周長最小時(shí),點(diǎn)P的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)O作一條直線分別交DA,BC的延長線于點(diǎn)E,F,連接BE,DF

1)求證:四邊形BFDE是平行四邊形;

2)若EFAB,垂足為M,AE2,求菱形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黎托社區(qū)在創(chuàng)建全國衛(wèi)生城市的活動(dòng)中,隨機(jī)檢查了本社區(qū)部分住戶10月份某周內(nèi)垃圾分類的實(shí)施情況,將他們繪制了兩幅不完整的統(tǒng)計(jì)圖(.小于5天;.5天;.6天;.7天).

1)扇形統(tǒng)計(jì)圖部分所對(duì)應(yīng)的圓心角的度數(shù)是______.

212月份雨花區(qū)將舉行一場各社區(qū)之間垃圾分類知識(shí)搶答賽,黎托社區(qū)準(zhǔn)備從甲、乙、丙、丁四戶家庭以抽簽的形式選取兩戶家庭參賽,求甲、丙兩戶家庭恰好被抽中的概率.

查看答案和解析>>

同步練習(xí)冊答案