【題目】如圖,已知∠ABC=∠DCB,添加一個(gè)條件,使△ABC≌△DCB,你添加的條件是_____.(注:只需寫(xiě)出一個(gè)條件即可)

【答案】A=D

【解析】

全等三角形的判定定理有SAS,ASA,AAS,SSS,根據(jù)定理解答即可.

添加的條件為:∠A=∠DAB=DCOB=OC;
∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,
AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,
∵OB=OC,
∴∠DBC=∠ACB,
∵∠ABC=∠DCB,
∴∠ABO=∠DCO,
∵∠AOB=∠DOC,∠A+∠ABO+∠AOB=180°,∠D+∠DCO+∠DOC=180°,
∴∠A=∠D,
∵∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,
∴能推出△ABC≌△DCB;
故答案是:∠A=∠D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,已知ABC,

(1)分別畫(huà)出與ABC關(guān)于x軸、y軸對(duì)稱(chēng)的圖形A1B1C1A2B2C2;

(2)寫(xiě)出A1B1C1A2B2C2各頂點(diǎn)坐標(biāo);

(3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=BC,∠CAB=30°,AC=8,半徑為2的⊙O從點(diǎn)A開(kāi)始(如圖1)沿直線AB向右滾動(dòng),滾動(dòng)時(shí)始終與直線AB相切(切點(diǎn)為D),當(dāng)⊙O與△ABC只有一個(gè)公共點(diǎn)時(shí)滾動(dòng)停止,作OG⊥AC于點(diǎn)G.
(1)圖1中,⊙O在AC邊上截得的弦長(zhǎng)AE=
(2)當(dāng)圓心落在AC上時(shí),如圖2,判斷BC與⊙O的位置關(guān)系,并說(shuō)明理由.
(3)在⊙O滾動(dòng)過(guò)程中,線段OG的長(zhǎng)度隨之變化,設(shè)AD=x,OG=y,求出y與x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中(AB>BC),AC=2BC,BC邊上的中線AD把ABC的周長(zhǎng)分成60和40兩部分,求AC和AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)說(shuō),我國(guó)著名數(shù)學(xué)家華羅庚在一次訪問(wèn)途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)32768,它是一個(gè)正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計(jì)算出的嗎?請(qǐng)按照下面的問(wèn)題試一試:

1)由,因?yàn)?/span>,請(qǐng)確定______位數(shù);

2)由32768的個(gè)位上的數(shù)是8,請(qǐng)確定的個(gè)位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)?/span>,請(qǐng)確定的十位上的數(shù)是_____________

(3)已知13824分別是兩個(gè)數(shù)的立方,仿照上面的計(jì)算過(guò)程,請(qǐng)計(jì)算:=____;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)要求進(jìn)行計(jì)算:
(1)計(jì)算:(﹣1)5+15×3﹣2 ;
(2)求不等式組: 的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的一塊地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①所示,P是等邊△ABC內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAPB點(diǎn)順時(shí)針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;

(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAPB點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△BCQ,連接PQ.當(dāng)PA、PB、PC滿(mǎn)足什么條件時(shí),∠PQC=90°?請(qǐng)說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

某商場(chǎng)用8萬(wàn)元購(gòu)進(jìn)一批新款襯衫,上架后很快銷(xiāo)售一空,商場(chǎng)又緊急購(gòu)進(jìn)第二批這種襯衫,數(shù)量是第一次的2倍,但進(jìn)價(jià)漲了4/件,結(jié)果共用去17.6萬(wàn)元.

(1)該商場(chǎng)第一批購(gòu)進(jìn)襯衫多少件?

(2)商場(chǎng)銷(xiāo)售這種襯衫時(shí),每件定價(jià)都是58元,剩至150件時(shí)按八折出售,全部售完.售完這兩批襯衫,商場(chǎng)共盈利多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案