【題目】嘉淇同學(xué)用配方法推導(dǎo)一元二次方程ax2+bx+c=0(a≠0)的求根公式時(shí),對(duì)于b2﹣4ac>0的情況,她是這樣做的:

由于a≠0,方程ax2+bx+c=0變形為:

x2+x=﹣,…第一步

x2+x+(2=﹣+(2,…第二步

(x+2=,…第三步

x+=(b2﹣4ac>0),…第四步

x=,…第五步

嘉淇的解法從第  步開始出現(xiàn)錯(cuò)誤;事實(shí)上,當(dāng)b2﹣4ac>0時(shí),方程ax2+bx+c=0(a≠O)的求根公式是  

用配方法解方程:x2﹣2x﹣24=0.

【答案】見解析

【解析】試題分析:1)觀察嘉淇的解法找出出錯(cuò)的步驟,寫出求根公式即可;

2)利用配方法求出方程的解即可

試題解析:解:(1)嘉淇的解法從第四步開始出現(xiàn)錯(cuò)誤;當(dāng)b24ac0時(shí),方程ax2+bx+c=0a≠0)的求根公式是x=

故答案為:四;x=

2x2﹣2x=24,配方得:x2﹣2x+1=24+1,即(x﹣12=25,開方得:x﹣1=±5,解得:x1=6,x2=﹣4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:2x3÷x=___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(  )

A. (﹣a+b)(a﹣b)×a2﹣b2=a2﹣b2 B. a3+a4=a7 C. a3a2=a5 D. 23=6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1,y1),B(x2,y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是(  )

A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,C=90°,BC=16,DC=12,AD=21.動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).

(1)設(shè)BPQ的面積為S,求St之間的函數(shù)關(guān)系式;

(2)當(dāng)t為何值時(shí),以B、P、Q三點(diǎn)為頂?shù)椎娜切问堑妊切危?/span>

(3)當(dāng)線段PQ與線段AB相交于點(diǎn)O,且2AO=OB時(shí),求∠BQP的正切值;

(4)是否存在時(shí)刻t,使得PQBD?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,ACB=90°CE是中線,ACDACE關(guān)于直線AC對(duì)稱

1)求證:四邊形ADCE是菱形;

2)求證:BC=ED

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用公式法解下列方程

1x=4x2+2 2)-x 25x40

37x2 -28x +7= 0 4(x+1)(x+8)=-12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x22x+m1=0有兩個(gè)實(shí)數(shù)根x1,x2

1求m的取值范圍;

2當(dāng)x12+x22=6x1x2時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形、直角三角形、平行四邊形、圓、這些圖形中是軸對(duì)稱圖形的是________

查看答案和解析>>

同步練習(xí)冊(cè)答案