【題目】某機(jī)械公司經(jīng)銷一種零件,已知這種零件的成本為每件20元,調(diào)查發(fā)現(xiàn)當(dāng)銷售價(jià)為24元,平均每天能售出32件,而當(dāng)銷售價(jià)每上漲2元,平均每天就少售出4件.
(1)若公司每天的銷售價(jià)為x元,則每天的銷售量為多少?
(2)如果物價(jià)部門規(guī)定這種零件的銷售價(jià)不得高于每件28元,該公司想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)當(dāng)為多少元?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】速滑運(yùn)動(dòng)受到許多年輕人的喜愛。如圖,四邊形是某速滑場館建造的滑臺,已知,滑臺的高為米,且坡面的坡度為.后來為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為.
(1)求新坡面的坡角及的長;
(2)原坡面底部的正前方米處是護(hù)墻,為保證安全,體育管理部門規(guī)定,坡面底部至少距護(hù)墻米。請問新的設(shè)計(jì)方案能否通過,試說明理由(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,菱形ABCD的頂點(diǎn)A、B在軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D在軸的正半軸上,,點(diǎn)A的坐標(biāo)為.
(1)求D點(diǎn)的坐標(biāo).
(2)求直線AC的函數(shù)關(guān)系式.
(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度,按照的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為秒.求為何值時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對角線AC相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會(huì)對空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進(jìn)了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進(jìn)價(jià)比一臺B型空氣凈化器的進(jìn)價(jià)多300元,用7500元購進(jìn)A型空氣凈化器和用6000元購進(jìn)B型空氣凈化器的臺數(shù)相同.
(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進(jìn)價(jià)各為多少元?
(2)在銷售過程中,A型空氣凈化器因?yàn)閮艋芰?qiáng),噪音小而更受消費(fèi)者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對B型空氣凈化器進(jìn)行降價(jià)銷售,經(jīng)市場調(diào)查,當(dāng)B型空氣凈化器的售價(jià)為1800元時(shí),每天可賣出4臺,在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺,如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請問商社電器應(yīng)將B型空氣凈化器的售價(jià)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】如圖1,四邊形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四邊形ABCD的面積.
【嘗試解決】
旋轉(zhuǎn)是一種重要的圖形變換,當(dāng)圖形中有一組鄰邊相等時(shí),往往可以通過旋轉(zhuǎn)解決問題.
(1)如圖2,連接 BD,由于AD=CD,所以可將△DCB繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)60°,得到△DAB′,則△BDB′的形狀是 .
(2)在(1)的基礎(chǔ)上,求四邊形ABCD的面積.
[類比應(yīng)用]如圖3,四邊形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=,求四邊形ABCD的面積.
考點(diǎn):幾何變換綜合題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-2,0),連結(jié)OA,將線段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到線段OB.
(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過A、O、B三點(diǎn)的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點(diǎn)C,使△BOC的周長最小?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由.
(4)如果點(diǎn)P是(2)中的拋物線上的動(dòng)點(diǎn),且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:對于關(guān)于的函數(shù),我們稱函數(shù)為函數(shù)y的m分函數(shù)(其中m為常數(shù)).
例如:對于關(guān)于x一次函數(shù)的分函數(shù)為
(1)若點(diǎn)在關(guān)于x的一次函數(shù)的分函數(shù)上,求的值;
(2)寫出反比例函數(shù)的分函數(shù)的圖象上y隨x的增大而減小的x的取值范圍: ;
(3)若是二次函數(shù)關(guān)于x的分函數(shù),
①當(dāng)時(shí),求y的取值范圍;
②當(dāng)時(shí),,則的取值范圍為 ;
③若點(diǎn),連結(jié),當(dāng)關(guān)于的二次函數(shù)的分函數(shù),與線段MN有兩個(gè)交點(diǎn),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,EF⊥AC,垂足為點(diǎn)H,分別交AD、AB及CB的延長線交于點(diǎn)E、M、F,且AE:FB=1:2,則AH:AC的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列結(jié)論:① b2-4ac>0;② 2a+b<0;③ 4a-2b+c=0;④ a︰b︰c= -1︰2︰3.其中正確的是【 】
(A) ①② (B) ②③ (C) ③④ (D)①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com