【題目】某社區(qū)為了加強(qiáng)居民對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)的了解,鼓勵(lì)社區(qū)居民在線參與作答《2020年新型冠狀病毒肺炎的防護(hù)全國統(tǒng)一考試(全國卷)》試卷(滿分100分),社區(qū)管理員隨機(jī)從該社區(qū)抽取40名居民的答卷,并對(duì)他們的成績(單位:分)進(jìn)行整理、分析,過程如下:
收集數(shù)據(jù)
85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 85 80 100 75 60 90 70 80 95 75 100 90
整理數(shù)據(jù)(每組數(shù)據(jù)可含最低值,不含最高值)
分組(分) | 頻數(shù) | 頻率 |
60~70 | 4 | 0.1 |
70~80 | a | b |
80~90 | 10 | 0.25 |
90~100 | c | d |
100~110 | 8 | 0.2 |
分析數(shù)據(jù)
(1)填空:a= ,b= ,c= ,d= ;
(2)補(bǔ)全頻率分布直方圖;
(3)由此估計(jì)該社區(qū)居民在線答卷成績?cè)?/span> (分)范圍內(nèi)的人數(shù)最多;
(4)如果該社區(qū)共有800人參與答卷,那么可估計(jì)該社區(qū)成績?cè)?/span>90分及以上約為 人.
【答案】(1)6,0.15,12,0.3;(2)見解析;(3):90~100;(4)400
【解析】
(1)根據(jù)數(shù)據(jù)找出a,c再求出相應(yīng)的b,d.
(2)根據(jù)(1)畫圖即可.
(3)從直方圖中直接找出頻率最高者即為所求.
(4)總數(shù)乘以頻率即可.
解:(1)由題意可知:
第二組的頻數(shù)a=6,第四組的頻數(shù)c=12,
∴第二組的頻率為:6÷40=0.15,第四組的頻率為:12÷40=0.3.
故答案為:6,0.15,12,0.3;
(2)如下圖即為補(bǔ)全的頻率分布直方圖;
(3)由此估計(jì)該社區(qū)居民在線答卷成績?cè)?/span>90~100(分)范圍內(nèi)的人數(shù)最多.
故答案為:90~100;
(4)800×(0.3+0.2)=400(人).
答:如果該社區(qū)共有800人參與答卷,那么可估計(jì)該社區(qū)成績?cè)?/span>90分及以上約為400人.
故答案為:400.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)D、E分別是邊BC、AB上一點(diǎn),DE∥AC,BD=5,把△BDE繞著點(diǎn)B旋轉(zhuǎn)得到△BD'E'(點(diǎn)D、E分別與點(diǎn)D',E'對(duì)應(yīng)),如果點(diǎn)A,D'、E'在同一直線上,那么AE'的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,AB=3,連結(jié)AB并延長至C,連結(jié)OC,若滿足OC2=BCAC,tanα=2,則點(diǎn)C的坐標(biāo)為( )
A.(﹣2,4)B.(﹣3,6)C.(﹣,)D.(﹣,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過A(-1,0)、B(3,0),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為2,點(diǎn)P(m,n)是線段AD上的動(dòng)點(diǎn).
(1)求拋物線和直線AD的解析式;
(2)過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)H,
①求線段PH的長度l與m的關(guān)系式;
②當(dāng)PH=2時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知經(jīng)過點(diǎn)A(﹣3,0)的拋物線y=ax2+2ax﹣3與y軸交于點(diǎn)C,點(diǎn)B與點(diǎn)A關(guān)于該拋物線的對(duì)稱軸對(duì)稱,D為該拋物線的頂點(diǎn).
(1)直接寫出該拋物線的對(duì)稱軸以及點(diǎn)B的坐標(biāo)、點(diǎn)C的坐標(biāo)、點(diǎn)D的坐標(biāo);
(2)聯(lián)結(jié)AD、DC、CB,求四邊形ABCD的面積;
(3)聯(lián)結(jié)AC.如果點(diǎn)E在該拋物線上,過點(diǎn)E作x軸的垂線,垂足為H,線段EH交線段AC于點(diǎn)F.當(dāng)EF=2FH時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組開展了一次課外活動(dòng),過程如下:如圖1,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)與D點(diǎn)重合.三角板的一邊交AB于點(diǎn)P,另一邊交BC的延長線于點(diǎn)Q.
(1)求證:DP=DQ;
(2)如圖2,小明在圖1的基礎(chǔ)上作∠PDQ的平分線DE交BC于點(diǎn)E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請(qǐng)猜測(cè)他的結(jié)論并予以證明;
(3)如圖3,固定三角板直角頂點(diǎn)在D點(diǎn)不動(dòng),轉(zhuǎn)動(dòng)三角板,使三角板的一邊交AB的延長線于點(diǎn)P,另一邊交BC的延長線于點(diǎn)Q,仍作∠PDQ的平分線DE交BC延長線于點(diǎn)E,連接PE,若AB:AP=3:4,請(qǐng)幫小明算出△DEP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A、B,與y軸分別交于點(diǎn)C,其中點(diǎn)A(﹣1,0),OB=4OA,OC=2OA
(1)求拋物線的解析式.
(2)點(diǎn)P是線段AB一動(dòng)點(diǎn),過P作PD∥AC交BC于D,當(dāng)△PCD面積最大時(shí),求點(diǎn)P的坐標(biāo).
(3)點(diǎn)M是位于線段BC上方的拋物線上一點(diǎn),當(dāng)∠ABC恰好等于△BCM中的某個(gè)角時(shí),直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=4,點(diǎn)D在邊BC上,且BD=3CD,DE⊥AB,垂足為點(diǎn)E,聯(lián)結(jié)CE.
(1)求線段AE的長;
(2)求∠ACE的余切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com