【題目】如圖,直線(xiàn)L:y=x+1交y軸于點(diǎn)A1,在x軸正方向上取點(diǎn)B1,使OB1=OA1;過(guò)點(diǎn)B1作A2B1⊥x軸,交L于點(diǎn)A2,在x軸正方向上取點(diǎn)B2,使B1B2=B1A2;過(guò)點(diǎn)B2作A3B2⊥x軸,交L于點(diǎn)A3,在x軸正方向上取點(diǎn)B3,使B2B3=B2A3;…記△OA1B1面積為S1,△B1A2B2面積為S2,△B2A3B3面積為S3,…則S2019等于_____.
【答案】24035.
【解析】
根據(jù)已知條件得到△OA1B1,△B1A2B2,△B2A3B3是等腰直角三角形,根據(jù)直線(xiàn)的解析式得到A1(0,1),求得B1(1,0),得到OB1=OA1=1,根據(jù)三角形的面積公式得到S1,同理S2,S3,…,進(jìn)而可得Sn=22n-2=22n-3,于是得到結(jié)論.
∵OB1=OA1;過(guò)點(diǎn)B1作A2B1⊥x軸,B1B2=B1A2;A3B2⊥x軸,B2B3=B2A3;…
∴△OA1B1,△B1A2B2,△B2A3B3是等腰直角三角形,
∵y=x+1交y軸于點(diǎn)A1,
∴A1(0,1),
∴B1(1,0),
∴OB1=OA1=1,
∴S1=×1×1=×12,
同理S2=×2×2=22,S3=4×4=42;…
∴Sn=22n﹣2=22n﹣3,
∴S2019=22×2019﹣3=24035
故答案為24035.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線(xiàn)y=a(x﹣)(x+)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線(xiàn)DE是拋物線(xiàn)的對(duì)稱(chēng)軸,點(diǎn)D在x軸上,點(diǎn)E在拋物線(xiàn)上,直線(xiàn)y=kx+過(guò)點(diǎn)A、C.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P是第二象限對(duì)稱(chēng)軸左側(cè)拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)P作PQ∥AC交對(duì)稱(chēng)軸于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,線(xiàn)段QD的長(zhǎng)為d,求d與t的函數(shù)解析式(不要求寫(xiě)出自變量t的取值范圍);
(3)在(2)的條件下,直線(xiàn)AC與對(duì)稱(chēng)軸交于點(diǎn)F,點(diǎn)M在對(duì)稱(chēng)軸ED上,連接AM、AE,∠AMD=2∠EAM,過(guò)點(diǎn)A作AG⊥AM交過(guò)點(diǎn)D平行于AE的直線(xiàn)于點(diǎn)G,點(diǎn)N是線(xiàn)段BP延長(zhǎng)線(xiàn)上一點(diǎn),連接AN、MN、NF,若四邊形NMGA與四邊形NFDA的面積相等,且FN∥AM,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),,點(diǎn)為拋物線(xiàn)的頂點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)為線(xiàn)段上一點(diǎn)(點(diǎn)不與點(diǎn)、重合),過(guò)點(diǎn)作軸的垂線(xiàn),與直線(xiàn)交于點(diǎn),與拋物線(xiàn)交于點(diǎn),過(guò)點(diǎn)作交拋物線(xiàn)于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),可得矩形,如圖1,點(diǎn)在點(diǎn)左邊,當(dāng)矩形的周長(zhǎng)最大時(shí),求的值,并求出此時(shí)的的面積;
(3)已知,點(diǎn)在拋物線(xiàn)上,連,直線(xiàn),垂足為,若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人利用撲克牌玩“10點(diǎn)”游戲,游戲規(guī)則如下:
①將牌面數(shù)字作為“點(diǎn)數(shù)”,如紅桃6的“點(diǎn)數(shù)”就是6(牌面點(diǎn)數(shù)與牌的花色無(wú)關(guān));
②兩人摸牌結(jié)束時(shí),將所得牌的“點(diǎn)數(shù)”相加,若“點(diǎn)數(shù)”之和小于或等于10,此時(shí)“點(diǎn)數(shù)”之和就是“最終點(diǎn)數(shù)”,若“點(diǎn)數(shù)”之和大于10,則“最終點(diǎn)數(shù)”是0;
③游戲結(jié)束之前雙方均不知道對(duì)方“點(diǎn)數(shù)”;
④判定游戲結(jié)果的依據(jù)是:“最終點(diǎn)數(shù)”大的一方獲勝,“最終點(diǎn)數(shù)”相等時(shí)不分勝負(fù).
現(xiàn)甲、乙均各自摸了兩張牌,數(shù)字之和都是5,這時(shí)桌上還有四張背面朝上的撲克牌,牌面數(shù)字分別是4,5,6,7.
(1)若甲從桌上繼續(xù)摸一張撲克牌,乙不再摸牌,則甲獲勝的概率為 ;
(2)若甲先從桌上繼續(xù)摸一張撲克牌,接著乙從剩下的撲克牌中摸出一張牌,然后雙方不再摸牌,請(qǐng)用樹(shù)狀圖或表格表示出這次摸牌后所有可能的結(jié)果,再列表呈現(xiàn)甲、乙的“最終點(diǎn)數(shù)”,并求乙獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于點(diǎn)D,延長(zhǎng)AO交⊙O于點(diǎn)E,連接CD、CE,若CE是⊙O的切線(xiàn).
(1)求證:CD是⊙O的切線(xiàn);
(2)若⊙O的半徑為4,OC=7,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠XOY=60°,點(diǎn)A在邊OX上,OA=2.過(guò)點(diǎn)A作AC⊥OY于點(diǎn)C,以AC為一邊在∠XOY內(nèi)作等邊三角形ABC,點(diǎn)P是△ABC圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過(guò)點(diǎn)P作PD∥OY交OX于點(diǎn)D,作PE∥OX交OY于點(diǎn)E.設(shè)OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=x2+mx+n經(jīng)過(guò)點(diǎn)B(6,1),C(5,0),且與y軸交于點(diǎn)A.
(1)求拋物線(xiàn)的表達(dá)式及點(diǎn)A的坐標(biāo);
(2)點(diǎn)P是y軸右側(cè)拋物線(xiàn)上的一點(diǎn),過(guò)點(diǎn)P作PQ⊥OA,交線(xiàn)段OA的延長(zhǎng)線(xiàn)于點(diǎn)Q,如果∠PAB=45°.求證:△PQA∽△ACB;
(3)若點(diǎn)F是線(xiàn)段AB(不包含端點(diǎn))上的一點(diǎn),且點(diǎn)F關(guān)于AC的對(duì)稱(chēng)點(diǎn)F′恰好在上述拋物線(xiàn)上,求FF′的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角三角形ABC中,∠ACB=90°,D、E是邊AB上兩點(diǎn),且CE所在直線(xiàn)垂直平分線(xiàn)段AD,CD平分∠BCE,BC=2,則AB=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com