【題目】閱讀下列材料:我們知道|a|的幾何意義是在數(shù)軸上數(shù)a對應的點與原點的距離,即|a|=|a0|,也就是說,|a|表示在數(shù)軸上數(shù)a與數(shù)0對應點之間的距離.這個結論可以推廣為:|ab|表示在數(shù)軸上數(shù)ab對應點之間的距離.

1 已知|a|=2,求a的值.

解:在數(shù)軸上與原點距離為2的點的對應數(shù)為﹣22,即a的值為2和﹣2

2 已知|a1|=2,求a的值.

解:在數(shù)軸上與1的距離為2點的對應數(shù)為3和﹣1,即a的值為3和﹣1

仿照閱讀材料的解法,解決下列問題:

1)已知|a|=,求a的值;

2)已知|a+2|=4,求a的值;

3)若數(shù)軸上表示a的點在﹣42之間,則|a+4|+|a2|的值為  

4)當a滿足  時,則|a+4|+|a2|的值最小,最小值是  

【答案】1)﹣33;(2)﹣62;(36;(4)﹣4a2;6

【解析】

1)由閱讀材料中的方法求出a的值即可;

2)由閱讀材料中的方法求出a的值即可;

3)根據(jù)a的范圍判斷出絕對值里邊式子的正負,利用絕對值的代數(shù)意義化簡,合并即可得到結果;

4)根據(jù)題意得出原式最小時a的范圍,并求出最小值即可.

解:(1|a|3,在數(shù)軸上與原點距離為3的點的對應數(shù)為﹣33,即a的值為﹣33;

2|a+2|4,在數(shù)軸上與﹣2距離為4的點的對應數(shù)為﹣62,即a的值為﹣62;

3)根據(jù)題意得:﹣4a2,即a+40a20,

則原式=a+4+2a6;

4)當a滿足﹣4a2時,最小值為2+46

故答案為:6;﹣4a2;6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的頂點坐標分別為A(﹣11)、B0,﹣2)、C1,0),點P0,2)繞點A旋轉180°得到點,點繞點B旋轉180°得到點,點繞點C旋轉180°得到點,點繞點A旋轉180°得到點,…,按此作法進行下去,則點的坐標為( )

A.0,4B.(﹣2,0C.2,﹣4D.(﹣2,﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進冰箱、彩電進行銷售.相關信息如下表:

進價(元/臺)

售價(元/臺)

冰箱

2500

彩電

2000

1)若商場用80000元購進冰箱的數(shù)量與用64000元購進彩電的數(shù)量相等,求表中a的值.

2)為了滿足市場需要求,商場決定用不超過9萬元采購冰箱、彩電共50臺,且冰箱的數(shù)量不少于彩電數(shù)量的

該商場有哪幾種進貨方式?

若該商場將購進的冰箱、彩電全部售出,獲得的最大利潤為w元,請用所學的函數(shù)知識求出w的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種油菜籽在相同條件下的發(fā)芽實驗結果如表:

1a ,b ;

2)這種油菜籽發(fā)芽的概率估計值是多少?請簡要說明理由;

3)如果該種油菜籽發(fā)芽后的成秧率為90%,則在相同條件下用10000粒該種油菜籽可得到油菜秧苗多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.

1)求證:BG=DE;

2)若EAD中點,FH=2,求菱形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有一組對角是直角的四邊形叫做“準矩形”;有兩組鄰邊(不重復)相等的四邊形叫做“準菱形”.如圖①,在四邊形ABCD中,若∠A=∠C90°,則四邊形ABCD是“準矩形”;如圖②,在四邊形ABCD中,若ABADBCDC,則四邊形ABCD是“準菱形”.

1)如圖,在邊長為1的正方形網(wǎng)格中,AB、C在格點(小正方形的頂點)上,請分別在圖③、圖④中畫出“準矩形”ABCD和“準菱形”ABCD′.(要求:D、D′在格點上);

2)下列說法正確的有 ;(填寫所有正確結論的序號)

一組對邊平行的“準矩形”是矩形;一組對邊相等的“準矩形”是矩形;

一組對邊相等的“準菱形”是菱形;一組對邊平行的“準菱形”是菱形.

3)如圖,在△ABC中,∠ABC90°,以AC為一邊向外作“準菱形”ACEF,且ACEC,AFEFAE、CF交于點D

若∠ACE=∠AFE,求證:“準菱形”ACEF是菱形;

的條件下,連接BD,若BD,∠ACB15°,∠ACD30°,請直接寫出四邊形ACEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形紙片ABCD中,AB=6,BC=8

1)將矩形紙片沿BD折疊,點A落在點E處(如圖①),設DEBC相交于點F,求BF的長;

2)將矩形紙片折疊,使點B與點D重合(如圖②),求折痕GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸交于A、B兩點(點A在點B的左側),與軸交于點C,頂點為D,對稱軸與軸交于點E,直線CE交拋物線于點F(異于點C),直線CD軸交于點G

1)如圖①,求直線CE的解析式和頂點D的坐標;

2)如圖①,點P為直線CF上方拋物線上一點,連接PC、PF,當PCF的面積最大時,點M是過P垂直于軸的直線l上一點,點N是拋物線對稱軸上一點,求的最小值;

3)如圖②,過點D軸于點I,將GDI沿射線GB方向平移至處,將繞點逆時針旋轉,當旋轉到一定度數(shù)時,點會與點I重合,記旋轉過程中的,若在整個旋轉過程中,直線G’’I’’分別交x軸和直線GD于點K、L兩點,是否存在這樣的KL,使GKL為以∠LGK為底角的等腰三角形?若存在,求此時GL的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014河南21題)某商店銷售10A型和20B型電腦的利潤為4000元,銷售20A型和10B型電腦的利潤為3500元.

1)求每臺A型電腦和B型電腦的銷售利潤;

2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍.設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關于x的函數(shù)關系式;

②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

3)實際進貨時,廠家對A型電腦出廠價下降元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

同步練習冊答案