點(diǎn)(2,1)關(guān)于x軸對(duì)稱的點(diǎn)坐標(biāo)為      

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、已知在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為:A(-3,4),B(4,-2).
(1)求點(diǎn)A、B關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo);
(2)在平面直角坐標(biāo)系中分別作出點(diǎn)A、B關(guān)于x軸的對(duì)稱點(diǎn)M、N,順次連接AM、BM、BN、AN,求四邊形AMBN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-2,0),點(diǎn)B在x軸的正半軸上,精英家教網(wǎng)點(diǎn)M在y軸的負(fù)半軸上,且|AB|=6,cos∠OBM=
5
5
,點(diǎn)C是M關(guān)于x軸的對(duì)稱點(diǎn).
(1)求過(guò)A、B、C三點(diǎn)的拋物線的函數(shù)表達(dá)式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,在線段OB的垂直平分線上求一點(diǎn)P,使點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)的O距離;
(3)在直線CD上方(1)中的拋物線(不包括C、D)上是否存在點(diǎn)N,使四邊形NCOD的面積最大?若存在,求出點(diǎn)N的坐標(biāo)及該四邊形面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A、B關(guān)于x軸上的點(diǎn)P(-1,0)成中心對(duì)稱,若點(diǎn)A的坐標(biāo)為(1,2),則點(diǎn)B坐標(biāo)是
(-3,-2)
(-3,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

作一個(gè)圖形關(guān)于一條直線的軸對(duì)稱圖形,再將這個(gè)軸對(duì)稱圖形沿著與這條直線平行的方向平移,我們把這樣的圖形變換叫做關(guān)于這條直線的滑動(dòng)對(duì)稱變換.在自然界和日常生活中,大量地存在這種圖形變換(如圖1),結(jié)合軸對(duì)稱和平移的有關(guān)性質(zhì),解答以下問(wèn)題:精英家教網(wǎng)
(1)如圖2,在關(guān)于直線l的滑動(dòng)對(duì)稱變換中,試證明:兩個(gè)對(duì)應(yīng)點(diǎn)A,A′的連線被直線l平分;
(2)若點(diǎn)P是正方形ABCD的邊AD上的一點(diǎn),點(diǎn)P關(guān)于對(duì)角線AC滑動(dòng)對(duì)稱變換的對(duì)應(yīng)點(diǎn)P′也在正方形ABCD的邊上,請(qǐng)僅用無(wú)刻度的直尺在圖3中畫出P′;
(3)定義:若點(diǎn)M到某條直線的距離為d,將這個(gè)點(diǎn)關(guān)于這條直線的對(duì)稱點(diǎn)N沿著與這條直線平行的方向平移到點(diǎn)M′的距離為s,稱[d,s]為點(diǎn)M與M′關(guān)于這條直線滑動(dòng)對(duì)稱變換的特征量.如圖4,在平面直角坐標(biāo)系xOy中,點(diǎn)B是反比例函數(shù)y=
3x
的圖象在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)為C,將點(diǎn)C沿平行于y軸的方向向下平移到點(diǎn)B′.
①若點(diǎn)B(1,3)與B′關(guān)于y軸的滑動(dòng)對(duì)稱變換的特征量為[m,m+4],判斷點(diǎn)B′是否在此函數(shù)的圖象上,為什么?
②已知點(diǎn)B與B′關(guān)于y軸的滑動(dòng)對(duì)稱變換的特征量為[d,s],且不論點(diǎn)B如何運(yùn)動(dòng),點(diǎn)B′也都在此函數(shù)的圖象上,判斷s與d是否存在函數(shù)關(guān)系?如果是,請(qǐng)寫出s關(guān)于d的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案