【題目】如圖1,矩形ABCD中,AB=4,AD=5,E為BC上一點(diǎn),BE:CE=3:2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),過點(diǎn)P作PF∥BC交直線AE于點(diǎn)F.
(1)線段AE= ;
(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)當(dāng)t為何值時(shí),以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時(shí)⊙F的半徑;
(4)如圖2,將△AEC沿直線AE翻折,得到△AEC',連結(jié)AC',如果∠ABF=∠CBC′,求t值.(直接寫出答案,不要求解答過程).
【答案】(1)5;(2)y=;(3)12;(4).
【解析】(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;
(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;
(3)由以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí)PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得;
(4)連接CC′,交直線AE于點(diǎn)Q,先證△CQE∽△ABE得,據(jù)此求得CQ=、CC′=2CQ=,再證△ABF∽△CBC′得,據(jù)此求得AF=,根據(jù)可得答案.
(1)∵四邊形ABCD為矩形,
∴BC=AD=5,
∵BE:CE=3:2,
則BE=3、CE=2,
∴AE==5,
故答案為:5;
(2)如圖1,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),即0≤t≤4,
∵PF∥BE,
∴,即,
∴AF=,
則EF=AE﹣AF=5﹣,即y=5﹣ (0≤t≤4);
如圖2,當(dāng)點(diǎn)P在射線AB上運(yùn)動(dòng)時(shí),即t>4,
此時(shí)EF=AF﹣AE=﹣5,即y=﹣5 (t>4);
綜上,y= ;
(3)以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí),PF=PG,
分以下三種情況:①當(dāng)t=0或t=4時(shí),顯然符合條件的⊙F不存在;
②當(dāng)0<t<4時(shí),如圖1,作FG⊥BC于點(diǎn)G,
則FG=BP=4﹣t,
∵PF∥BC,
∴△APF∽△ABE,
∴,即,
∴PF=t,
由4﹣t=t可得t=,
則此時(shí)⊙F的半徑PF=;
③當(dāng)t>4時(shí),如圖2,同理可得FG=t﹣4、PF=t,
由t﹣4=t可得t=16,
則此時(shí)⊙F的半徑PF=12;
(4)如圖3,連接CC′,交直線AE于點(diǎn)Q,
∵△CAQ≌△C′AQ,
∴AC=AC′、∠CAQ=∠C′AQ,
則∠CQE=∠ABE=90°,
∵∠CEQ=∠AEB,
∴△CQE∽△ABE,
∴,即,
∴CQ=,
則CC′=2CQ=,
∵∠ABF=∠CBC′、∠BAE=∠ECC′,
∴△ABF∽△CBC′,
∴,即,
解得: AF=,
由(2)知AF=t,
∴,
解得:t=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=.求CD的長和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠CEF的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠DCE的角平分線CG的反向延長線和∠ABE的角平分線BF交于點(diǎn)F,∠E﹣∠F=33°,則∠E=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)D坐標(biāo),并直接寫出y1>y2時(shí)x的取值范圍;
(3)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,D 為 BC 的中點(diǎn),DE⊥AC 于點(diǎn) E,AE=8,求 CE 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一棵樹CD的10m高處的B點(diǎn)有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經(jīng)過的路程相等,試問這棵樹多高?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com