【題目】已知點A和點C分別在直線MN和直線EF上,點B在直線外,∠BAN=α,∠BCF=β.
(1)如圖1,若MN∥EF,則∠B= (用α,β的式子表示,不寫證明過程)
(2)在(1)的條件下,點T在直線MN與直線EF之間,∠MAT=∠BAN,∠TCB=2∠TCE,求∠B與∠T之間的數(shù)量關系.
(3)如圖2,若MN不平行于EF,直線AC平分∠MAB,且平分∠ECB,則∠B= (用α,β的式子表示,不寫證明過程)
【答案】(1)β-α;(2)∠ATC=-∠B+60°;(3)∠B=(β-α)
【解析】
(1)利用平行線的性質和三角形外角的性質求解即可;
(2)過T作TK∥MN,根據(jù)平行線的性質得出∠ATK=∠MAT,∠KTC=∠TCE,再由∠MAT=∠BAN,∠TCB=2∠TCE,表示出∠ATC=-(β-α)+60°,結合∠B=β-α,即可求出結果;
(3)根據(jù)題中條件可得:∠BAH=(180°-α),∠BCA=(180°-β),結合∠BAH=∠B+∠BCA,可得∠B.
解:(1)如圖,設MN與BC交于點G,
∵MN∥EF,
∴∠BGN=∠BCF=β,
∴∠B=∠BGN-∠BAN=β-α,
故答案為:β-α;
(2)如圖,過T作TK∥MN,
∵MN∥EF,
∴∠ATK=∠MAT,∠KTC=∠TCE,
∵∠MAT=∠BAN,∠TCB=2∠TCE,
∴∠ATC=∠ATK+∠KTC
=∠MAT+∠TCE
=∠BAN+∠TCB
=α+××(180°-∠BCF)
=α-β+60°
=-(β-α)+60°
∵∠B=β-α,
∴∠ATC=-∠B+60°;
(3)如圖,
∵直線AC平分∠MAB,且平分∠ECB,
∴∠BAH=∠MAH=(180°-∠BAN)=(180°-α),
∠BCA=∠ECA=(180°-∠BCF)=(180°-β),
∵∠BAH=∠B+∠BCA,
∴(180°-α)=∠B+(180°-β),
∴∠B=(β-α).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,的頂點都在網格點上,其中,點坐標為,
(1)寫出點、的坐標:(____,____)、(____,____)
(2)將先向左平移個單位長度,再向上平移個單位長度,得到,畫出;
(3)寫出三個頂點坐標(___,___)、(___,___)、(___,___);
(4)求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀第(1)題解答過程填理由,并解答第(2)題
(1)已知:如圖1,AB∥CD,P為AB,CD之間一點,求∠B+∠C+∠BPC的大。
解:過點P作PM∥AB
∵AB∥CD(已知)
∴PM∥CD ,
∴∠B+∠1=180°, .
∴∠C+∠2=180°
∵∠BPC=∠1+∠2
∴∠B+∠C+∠BPC=360°
(2)我們生活中經常接觸小刀,如圖2小刀刀柄外形是一個直角梯形挖去一個小半圈,其中AF∥EG,∠AEG=90°,刀片上、下是平行的(AB∥CD),轉動刀片時會形成∠1和∠2,那么∠1+∠2的大小是否會隨刀片的轉動面改變,如不改變,求出其大小;如改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與直線BC交于B點,∠ABC=n°(n>110),直線EF與直線AB交于點G,與直線BC交于H點,∠AGE=70°,將EF向右平移,在平移的過程中,∠GHC=_______°(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀思考:
小迪在學習過程中,發(fā)現(xiàn)“數(shù)軸上兩點間的距離”可以用“表示這兩點數(shù)的差”來表示,探索過程如下:
如圖1所示,線段AB,BC,CD的長度可表示為:AB=3=4﹣1,BC=5=4﹣(﹣1),CD=3=(﹣1)﹣(﹣4),于是他歸納出這樣的結論:如果點A表示的數(shù)為a,點B表示的數(shù)為b,當b>a時,AB=b﹣a(較大數(shù)﹣較小數(shù)).
(2)嘗試應用:
①如圖2所示,計算:OE= ,EF= ;
②把一條數(shù)軸在數(shù)m處對折,使表示﹣19和2019兩數(shù)的點恰好互相重合,則m= ;
(3)問題解決:
①如圖3所示,點P表示數(shù)x,點M表示數(shù)﹣2,點N表示數(shù)2x+8,且MN=4PM,求出點P和點N分別表示的數(shù);
②在上述①的條件下,是否存在點Q,使PQ+QN=3QM?若存在,請直接寫出點Q所表示的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如右圖,在中,,,垂足為點,有下列說法:①點與點的距離是線段的長;②點到直線的距離是線段的長;③線段是邊上的高;④線段是邊上的高.
上述說法中,正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,萬州市居民生活用水按階梯式水價計費,表是該市居民“一戶一表”生活用水階梯式計費價格表的一部分信息:(水價計費自來水銷售費用污水處理費用)
自來水銷售價格 | 污水處理價格 | |
每戶每月用水量 | 單價:元噸 | 單價:元噸 |
17噸及以下 | 0.80 | |
超過17噸不超過30噸的部分 | 0.80 | |
超過30噸的部分 | 6.00 | 0.80 |
說明:①每戶產生的污水量等于該戶的用水量,②水費=自來水費+污水處理費;
已知小明家2013年3月份用水20噸,交水費66元;5月份用水25噸,交水費91元.
(1)求,的值.
(2)隨著夏天的到來,用水量將增加。為了節(jié)省開支,小夢計劃把6月份的水費控制在不超過家庭月收入的2%,若小夢加的月收入為9200元,則小王家6月份最多能用水多少噸?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com