【題目】在矩形中,,,點是邊上一點,于點,點在射線上,且的比例中項.

1)如圖1,求證:

2)如圖2,當(dāng)點在線段之間,聯(lián)結(jié),且互相垂直,求的長;

3)聯(lián)結(jié),如果與以點、、為頂點所組成的三角形相似,求的長.

【答案】1)詳見解析;(2;(3的長分別為3

【解析】

1)由比例中項知 ,據(jù)此可證 ,再證明 可得答案;

2)先證 ,結(jié)合 ,得 ,從而知 ,據(jù)此可得 ,由(1)得,據(jù)此知 ,求得 ;

3)分 兩種情況分別求解可得.

1)證明:∵的比例中項

2)解:互相垂直

由(1)得

,

由(1)得

3)∵,

,由(1)得

當(dāng)與以點、為頂點所組成的三角形相似時

1) ,如圖

由(2)得:

2,如圖

過點,垂足為點

由(1)得

設(shè),則,

,解得

綜上所述,的長分別為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸、軸分別交于,兩點,是以為圓心,1為半徑的圓上一動點,連接,當(dāng)的面積最大時,點的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,函數(shù)為常數(shù),,)的圖象經(jīng)過點,直線軸,軸分別交于,兩點.

1)求的度數(shù);

2)如圖2,連接,當(dāng)時,求此時的值:

3)如圖3,點,點分別在軸和軸正半軸上的動點.再以、為鄰邊作矩形.若點恰好在函數(shù)為常數(shù),)的圖象上,且四邊形為平行四邊形,求此時、的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操場上有三根測桿ABMNXY,MNXY,其中測桿AB在太陽光下某一時刻的影子為BC(如圖中粗線).

(1)畫出測桿MN在同一時刻的影子NP(用粗線表示),并簡述畫法;

(2)若在同一時刻測桿XY的影子的頂端恰好落在點B處,畫出測桿XY所在的位置(用實線表示),并簡述畫法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點D、E分別在ABC中的邊ABAC上,那么不能判定DEBC的比例式是( 。

A. ADDBAEEC B. DEBCADAB

C. BDABCEAC D. ABACADAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,PA切⊙O于點A,PB切⊙O于點B,且∠APB60°

1)求∠BAC的度數(shù);

2)若PA,求點O到弦AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在勾股章中有這樣一個問題:今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?

用今天的話說,大意是:如圖,是一座邊長為200步(是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形ABCD的頂點A為圓心,線段AD長為半徑畫弧,交AB邊于F點;再以頂點C為圓心,線段CD長為半徑畫弧,交AB邊于點E,若ADCD2,則DEDFEF圍成的陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線11y1kx+b與反比例函數(shù)y2相交于A(﹣1,4)和B(﹣4,a),直線12y3=﹣x+e與反比例函數(shù)y2相交于B、C兩點,交y軸于點D,連接OB,OCOA

1)求反比例函數(shù)的解析式和c的值;

2)求△BOC的面積;

3)直接寫出當(dāng)kx+bx的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案