【題目】如圖,在平面直角坐標(biāo)系中,AOB是直角三角形,AOB=90°,邊AB與y軸交于點C.

(1)A=AOC,試說明:B=BOC;

(2)延長AB交x軸于點E,過O作ODAB,若DOB=EOB,A=E,求A的度數(shù);

(3)如圖,OF平分AOM,BCO的平分線交FO的延長線于點P,A=40°,當(dāng)ABO繞O點旋轉(zhuǎn)時(邊AB與y軸正半軸始終相交于點C),問P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請說明理由.

【答案】見解析(2)30°(3)P的度數(shù)不變,P=25°,理由見解析

【解析】⑴∵AOB是直角三角形

∴∠A+B=90°,AOC+BOC=90°

∵∠A=AOC ∴∠B=BOC

⑵∵∠A+ABO=90°,DOB+ABO=90°

∴∠A=DOB 即DOB=EOB=OAE=OEA

∵∠DOB+EOB+OEA=90° ∴∠A=30°

⑶∠P的度數(shù)不變,P=25°.

∵∠AOM=90°-AOC,BCO=A+AOC

又OF平分AOM,CP平分BCO

∴∠FOM=45°-AOC,PCO=A+AOC

∴∠P=180°-(PCO+FOM+90°)=45°-A=25°

(1)由直角三角形兩銳角互余及等角的余角相等即可證明;

(2)由直角三角形兩銳角互余、等量代換求得DOB=EOB=OAE=E;然后根據(jù)外角定理知DOB+EOB+OEA=90°;從而求得DOB=30°,即A=30°;

(3)由角平分線的性質(zhì)知FOM=45°- AOC PCO= A+ AOC ,根據(jù)①②解得PCO+FOM=45°+ A,最后根據(jù)三角形內(nèi)角和定理求得旋轉(zhuǎn)后的P的度數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)是(﹣2,4),過點AAB⊥y軸,垂足為B,連結(jié)OA.

(1)求△OAB的面積;

(2)若拋物線y=﹣x2﹣2x+c經(jīng)過點A,求c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=20,

(1)寫出數(shù)軸上點B表示的數(shù)   

(2)|5﹣3|表示53之差的絕對值,實際上也可理解為53兩數(shù)在數(shù)軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點與表示有理數(shù)3的點之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動點PO點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.求當(dāng)t為多少秒時?A,P兩點之間的距離為2;

(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.問當(dāng)t為多少秒時?P,Q之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在黃州服裝批發(fā)市場,某種品牌的時裝當(dāng)季節(jié)將來臨時,價格呈上升趨勢,設(shè)這種時裝開始時定價為20元,并且每周(7天)漲價2元,從第6周開始保持30元的價格平穩(wěn)銷售;從第12周開始,當(dāng)季節(jié)即將過去時,平均每周減價2元,直到第16周周末,該服裝不再銷售.

(1)試建立銷售價y與周次x之間的函數(shù)關(guān)系式;

(2)若這種時裝每件進價Z與周次x次之間的關(guān)系為Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x為整數(shù),試問該服裝第幾周出售時,每件銷售利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EFAD,∠1=∠2,∠BAC70°,求∠AGD(請?zhí)羁眨?/span>

解:∵EFAD

∴∠2      

又∵∠1=∠2

∴∠1=∠3   

AB      

∴∠BAC+   180°(   

∵∠BAC70°(   

∴∠AGD      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地臺風(fēng)帶來嚴(yán)重災(zāi)害,該市組織20輛汽車裝食品、藥品、生活用品三種救災(zāi)物質(zhì)共100噸到災(zāi)民安置點.按計劃20輛汽車都要裝運,每輛汽車只能裝運同種物質(zhì)且必須裝滿.根據(jù)表格提供的信息,解答下列問題:

物資種類

食品

藥品

生活用品

每輛汽車運載量(噸)

6

5

4

每噸所需運費(元/噸)

120

160

100

1)若裝食品的車輛是5輛,裝藥品的車輛為__________輛;

2)設(shè)裝食品的車輛為x輛,裝藥品的車輛為y輛,求yx的函數(shù)關(guān)系式;

3)如果裝食品的車輛不少于7輛,裝藥品的車輛不少于4輛,那么車輛的安排有幾種方案?請寫出每種方案并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 一個游戲中獎的概率是,則做100次這樣的游戲一定會中獎

B. 為了了解全國中學(xué)生的心理健康狀況,應(yīng)采用普查的方式

C. 一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1

D. 若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟的高速發(fā)展,有著經(jīng)濟晴雨表之稱的股市也得到迅速的發(fā)展,下表是今年上證指數(shù)某一周星期一至星期五的變化情況.(注:上周五收盤時上證指數(shù)為2019點,每一天收盤時指數(shù)與前一天相比,漲記為,跌記為

星期

指數(shù)的變化(與前一天比較)

1)本周星期二收盤時的上證指數(shù)是 點;

2)本周星期五收盤時的上證指數(shù)與上周星期五收盤時的上證指數(shù)相比,是增加了還是減少了?

3)本周哪一天收盤時的上證指數(shù)最高?哪一天收盤時的上證指數(shù)最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】合肥市打造世界級國家旅游中心,精心設(shè)計12個千年古鎮(zhèn)。如圖1是某明清小院圍墻中的精美圖案,它是兩個形狀大小相同的菱形與一個圓組成,且A、C、E、G在其對稱軸AG上.已知菱形的邊長和圓的直徑都是1dm,∠A= 60°.

(1)求圖案中AG的長;

(2)假設(shè)小院的圍墻一側(cè)用上述圖案如圖2排列,其中第二塊圖案左邊菱形一個頂點正好經(jīng)過第一塊圖案的右邊菱形的對稱中心,....,以此類推,第101塊這種圖案這樣排列長為多少m?(不考慮縫隙及拼接處)

查看答案和解析>>

同步練習(xí)冊答案