【題目】如圖,直線y=x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=x+3上,若N點在第二象限內(nèi),則tan∠AON的值為( 。
A. B. C. D.
【答案】A
【解析】
過O作OC⊥AB于C,過N作ND⊥OA于D,設(shè)N的坐標(biāo)是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐標(biāo),得出ND、OD,代入tan∠AON=求出即可.
過O作OC⊥AB于C,過N作ND⊥OA于D,
∵N在直線y=x+3上,
∴設(shè)N的坐標(biāo)是(x,x+3),
則DN=x+3,OD=-x,
y=x+3,
當(dāng)x=0時,y=3,
當(dāng)y=0時,x=-4,
∴A(-4,0),B(0,3),
即OA=4,OB=3,
在△AOB中,由勾股定理得:AB=5,
∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,
∴3×4=5OC,
OC=,
∵在Rt△NOM中,OM=ON,∠MON=90°,
∴∠MNO=45°,
∴sin45°=,
∴ON=,
在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
即(x+3)2+(-x)2=()2,
解得:x1=-,x2=,
∵N在第二象限,
∴x只能是-,
x+3=,
即ND=,OD=,
tan∠AON=.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:四邊形ABCD中,對角線BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸相交于、兩點(其中為坐標(biāo)原點),過點作直線軸于點,交拋物線于點,點關(guān)于拋物線對稱軸的對稱點為(其中、不重合),連接交軸于點,連接和.
(1)時,求拋物線的解析式和的長;
如圖時,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】冬至是一年中太陽光照射最少的日子,如果此時樓房最低層能采到陽光,一年四季整座樓均能受到陽光照射,所以冬至是選房買房時確定陽光照射的最好時機.吳江某居民小區(qū)有一朝向為正南方向的居民樓.該居民樓的一樓是高為米的小區(qū)超市,超市以上是居民住房,現(xiàn)計劃在該樓前面米處蓋一棟新樓,已知吳江地區(qū)冬至正午的陽光與水平線夾角大約為.(參考數(shù)據(jù)在,)
中午時,若要使得超市采光不受影響,則新樓的高度不能超過多少米?(結(jié)果保留整數(shù))
若新建的大樓高米,則中午時,超市以上的居民住房采光是否受影響,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點H,點M是弧CBD 上任意一點,AH=2,CH=4.
(1)求⊙O 的半徑r 的長度;
(2)求sin∠CMD;
(3)直線BM交直線CD于點E,直線MH交⊙O 于點 N,連接BN交CE于點 F,求HEHF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圖1和圖2中的四邊形ABCD都是正方形,△ABE的邊長分別為a,b,c,請你從圖1到圖2,圖2到圖3的變換過程中,利用幾何圖形的面積關(guān)系,求a,b,c之間的等量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,在△ABC外側(cè)作直線CP,點A關(guān)于直線CP的對稱點為D,連接AD,BD,其中BD交直線CP于點E.
(1)如圖1,∠ACP=15°.
①依題意補全圖形;
②求∠CBD的度數(shù);
(2)如圖2,若45°<∠ACP<90°,直接用等式表示線段AC,DE,BE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預(yù)測,井建立如下模型:設(shè)第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關(guān)系:Q=
(1)當(dāng)8<t≤24時,求P關(guān)于t的函數(shù)解析式;
(2)設(shè)第t個月銷售該原料藥的月毛利潤為w(單位:萬元)
①求w關(guān)于t的函數(shù)解析式;
②該藥廠銷售部門分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應(yīng)的月銷售量P的最小值和最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com