【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為,十位上和個位上的數(shù)字之和為,如果,那么稱這個四位數(shù)為“和平數(shù)”.
例如:1423,,,因為,所以1423是“和平數(shù)”.
(1)直接寫出:最小的“和平數(shù)”是 ,最大的“和平數(shù)”是 ;
(2)將一個“和平數(shù)”的個位上與十位上的數(shù)字交換位置,同時,將百位上與千位上的數(shù)字交換位置,稱交換前后的這兩個“和平數(shù)”為一組“相關(guān)和平數(shù)”.
例如:1423與4132為一組“相關(guān)和平數(shù)”
求證:任意的一組“相關(guān)和平數(shù)”之和是1111的倍數(shù).
(3)求個位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有“和平數(shù)”;
【答案】(1)1001,9999;(2)見詳解;(3)2754和4848
【解析】
(1)根據(jù)和平數(shù)的定義,即可得到結(jié)論;
(2)設(shè)任意的兩個“相關(guān)和平數(shù)”為,(a,b,c,d分別取0,1,2,…,9且a≠0,b≠0),于是得到=1100(a+b)+11(c+d)=1111(a+b),即可得到結(jié)論.
(3)設(shè)這個“和平數(shù)”為 ,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,
即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、當a=2,d=4時,2(c+1)=12k,得到c=5則b=7;②、當a=4,d=8時,得到c=4則b=8,于是得到結(jié)論;
解:(1)由題意得,最小的“和平數(shù)”1001,最大的“和平數(shù)”9999,
故答案為:1001,9999;
(2)設(shè)任意的兩個“相關(guān)和平數(shù)”為,(a,b,c,d分別取0,1,2,…,9且a≠0,b≠0),則
=1100(a+b)+11(c+d)=1111(a+b);
即兩個“相關(guān)和平數(shù)”之和是1111的倍數(shù).
(3)設(shè)這個“和平數(shù)”為,則d=2a,a+b=c+d,b+c=12k,
∴2c+a=12k,
即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),
①當a=2,d=4時,2(c+1)=12k,
可知c+1=6k且a+b=c+d,
∴c=5則b=7,
②當a=4,d=8時,
2(c+2)=12k,
可知c+2=6k且a+b=c+d,
∴c=4則b=8,
綜上所述,這個數(shù)為:2754和4848.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示,將△ABC水平向左平移3個單位,再豎直向下平移2個單位。
(1)讀出△ABC的三個頂點坐標;
(2)請畫出平移后的△A′B′C′,并直接寫出點A/、B′、C′的坐標;
(3)求平移以后的圖形的面積 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,與BC相交于點F,過點B作BE⊥AD于點D,交AC延長線于點E,過點C作CH⊥AB于點H,交AF于點G,則下列結(jié)論:⑤;正確的有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中點A到點B的距離為2,點C到點B的距離為8,如圖所示:設(shè)點A,B,C所對應(yīng)的數(shù)的和是m.
(1)若以B為原點,則點C所對應(yīng)的數(shù)是 ;若以C為原點,則m的值是 .
(2)若原點O在圖中數(shù)軸上,且點C到原點O的距離為4,求m的值.
(3)動點P從A點出發(fā),以每秒3個單位長度的速度向終點C移動,動點Q同時從B點出發(fā),以每秒2個單位的速度向終點C移動,運動時間為t秒,求P、Q兩點間的距離?(用含t的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寒假就要到了,未來充實寒假生活,張鑫與李亮打算一起到新華書店買書,
下面是張鑫與李亮的對話內(nèi)容:
根據(jù)他們倆的對話內(nèi)容,列方程解答下列問題:
(1)如果張鑫上次買書沒有辦卡,他需要付多少錢?
(2)在這個書店買書,什么情況下,辦卡比補辦卡便宜?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,從旗桿正前方2m處的點C出發(fā),沿斜面坡度i=1∶的斜坡CD前進4m到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5 m.已知A,B,C,D,E在同一平面內(nèi),AB⊥BC,AB∥DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,計算結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,點E為CD的中點,射線BE交AD的延長線于點F,連接CF.
(1)求證:四邊形BCFD是菱形;
(2)若AD=1,BC=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線CD與⊙O相切于點C,且與AB的延長線交于點E.點C是弧BF的中點.
(1)求證:AD⊥CD;
(2)若∠CAD=30°.⊙O的半徑為3,一只螞蟻從點B出發(fā),沿著BE--EC--弧CB爬回至點B,求螞蟻爬過的路程(π≈3.14,≈1.73,結(jié)果保留一位小數(shù).)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com