【題目】在平面直角坐標(biāo)系xOy中,拋物線,與x軸交于點(diǎn)C,點(diǎn)C在點(diǎn)D的左側(cè),與y軸交于點(diǎn)A

求拋物線頂點(diǎn)M的坐標(biāo);

若點(diǎn)A的坐標(biāo)為,軸,交拋物線于點(diǎn)B,求點(diǎn)B的坐標(biāo);

的條件下,將拋物線在B,C兩點(diǎn)之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個(gè)交點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.

【答案】(1)M的坐標(biāo)為;(2B43);(3

【解析】

利用配方法將已知函數(shù)解析式轉(zhuǎn)化為頂點(diǎn)式方程,可以直接得到答案

根據(jù)拋物線的對(duì)稱性質(zhì)解答;

利用待定系數(shù)法求得拋物線的表達(dá)式為根據(jù)題意作出圖象G,結(jié)合圖象求得m的取值范圍.

解:(1 ,

該拋物線的頂點(diǎn)M的坐標(biāo)為

知,該拋物線的頂點(diǎn)M的坐標(biāo)為;

該拋物線的對(duì)稱軸直線是,

點(diǎn)A的坐標(biāo)為,軸,交拋物線于點(diǎn)B,

點(diǎn)A與點(diǎn)B關(guān)于直線對(duì)稱,

;

拋物線y軸交于點(diǎn)

拋物線的表達(dá)式為

拋物線G的解析式為:

,得:

拋物線x軸的交點(diǎn)C的坐標(biāo)為

點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為

代入,得:

代入,得:

所求m的取值范圍是

故答案為:(1M的坐標(biāo)為;(2B4,3);(3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線 相交于和點(diǎn)兩點(diǎn).

⑴求拋物線的函數(shù)表達(dá)式;

⑵若點(diǎn)是位于直線上方拋物線上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);

⑶在拋物線的對(duì)稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的⊙OBC于點(diǎn)D,過點(diǎn)DEFAC于點(diǎn)E,交AB延長線于點(diǎn)F

1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;

2)若⊙O半徑為5,CD6,求DE的長;

3)求證:BC24CEAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測(cè)出了A、B間的距離:先在AB外選一點(diǎn)C,然后測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)量出MN的長為12m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動(dòng)的描述錯(cuò)誤的是( )

A. AB=24m B. MNAB

C. CMN∽△CAB D. CM:MA=1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)αα180°)后與⊙O相切,則α的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知斜坡AB長60米,坡角(即BAC)為30°,BCAC,現(xiàn)計(jì)劃在斜坡中點(diǎn)D處挖去部分坡體(用陰影表示)修建一個(gè)平行于水平線CA的平臺(tái)DE和一條新的斜坡BE.(請(qǐng)將下面2小題的結(jié)果都精確到0.1米,參考數(shù)據(jù)).

1若修建的斜坡BE的坡角(即BAC)不大于45°,則平臺(tái)DE的長最多為 米;

2一座建筑物GH距離坡腳A點(diǎn)27米遠(yuǎn)(即AG=27米),小明在D點(diǎn)測(cè)得建筑物頂部H的仰角(即HDM)為30°.點(diǎn)B、C、A、G、H在同一個(gè)平面上,點(diǎn)C、A、G在同一條直線上,且HGCG,問建筑物GH高為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,∠D=45°,AB=BC=2,點(diǎn)E為四邊形ABCD內(nèi)部一點(diǎn),且滿足CE2AE2=2BE2,則點(diǎn)E在運(yùn)動(dòng)過程中所形成的圖形的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備在各班設(shè)立圖書角以豐富同學(xué)們的課余文化生活,為了更合理的搭配各類書籍,學(xué)校團(tuán)委以我最喜愛的書籍為主題,對(duì)學(xué)生最喜愛的一種書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問題:

1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?

2)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;

3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對(duì)應(yīng)的圓心角的度數(shù);

4)如果這所中學(xué)共有學(xué)生1800名,那么請(qǐng)你估計(jì)最喜愛科普類書籍的學(xué)生人數(shù).

5)學(xué)校若在喜愛藝術(shù)、文學(xué)、科普、體育四類中任意抽取兩類建立興趣小組,求出恰好選中是體育和科普兩類的概率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ADBC,垂足為D,ADBD3,CD2,點(diǎn)P從點(diǎn)B出發(fā)沿線段BC的方向移動(dòng)到點(diǎn)C停止,過點(diǎn)PPQBC,交折線BAAC于點(diǎn)Q,連接DQ、CQ,若ADQCDQ的面積相等,則線段BP的長度是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案