【題目】如圖△ABC是等邊三角形,BD是中線,延長BC到E,使CE=CD.求證:DB=DE.

【答案】證明:∵△ABC是等邊三角形,BD是中線,
∴∠ABC=∠ACB=60°.
∠DBC=30°(等腰三角形三線合一).
又∵CE=CD,
∴∠CDE=∠CED.
又∵∠BCD=∠CDE+∠CED,
∴∠CDE=∠CED= ∠BCD=30°.
∴∠DBC=∠DEC.
∴DB=DE(等角對等邊)
【解析】根據(jù)等邊三角形的性質(zhì)得到∠ABC=∠ACB=60°,∠DBC=30°,再根據(jù)角之間的關(guān)系求得∠DBC=∠CED,根據(jù)等角對等邊即可得到DB=DE.
【考點(diǎn)精析】本題主要考查了三角形的外角和等邊三角形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;等邊三角形的三個角都相等并且每個角都是60°才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列多項(xiàng)式因式分解:
(1)x3y﹣2x2y+xy;
(2)9a2(x﹣y)+4b2(y﹣x).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在⊙O上,點(diǎn)P是⊙O外一點(diǎn),PA切⊙O于點(diǎn)A,連接OP交⊙O于點(diǎn)D,作AB⊥OP于點(diǎn)C,交⊙O于點(diǎn)B,連接PB.

(1)求證:PB是⊙O的切線;

(2)若PC=9,AB=6

①求圖中陰影部分的面積;

②若點(diǎn)E是⊙O上一點(diǎn),連接AE,BE,當(dāng)AE=6 時,BE=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,若點(diǎn)M(1,3)與點(diǎn)N(x,3)之間的距離是5,則x的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)探究課上,老師出示了這樣的探究問題,請你一起來探究:
已知:C是線段AB所在平面內(nèi)任意一點(diǎn),分別以AC,BC為邊,在AB同側(cè)作等邊三角形ACE和BCD,聯(lián)結(jié)AD,BE交于點(diǎn)P.
(1)如圖1,當(dāng)點(diǎn)C在線段AB上移動時,線段AD與BE的數(shù)量關(guān)系是:

(2)如圖2,當(dāng)點(diǎn)C在直線AB外,且∠ACB<120°,上面的結(jié)論是否還成立?若成立請證明,不成立說明理由.

(3)在(2)的條件下,∠APE的大小是否隨著∠ACB的大小的變化而發(fā)生變化,若變化,寫出變化規(guī)律,若不變,請求出∠APE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象經(jīng)過第二、四象限,則k的值可以是(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2m=32n=2,4m+2n=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形、等邊三角形、直角三角形、等腰直角三角形等特殊的三角形中,是軸對稱圖形的有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一個條件,某學(xué)習(xí)小組在討論這個條件時給出了如下幾種方案: ①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案