【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時,y的值隨x值的增大而增大.

其中正確的結(jié)論有( )

A.1個 B.2個 C.3個 D.4個

【答案】B

【解析】

試題分析:根據(jù)拋物線的對稱軸為直線x=﹣=2,則有4a+b=0;觀察函數(shù)圖象得到當(dāng)x=﹣3時,函數(shù)值小于0,則9a﹣3b+c<0,即9a+c<3b;由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根據(jù)拋物線開口向下得a<0,于是有8a+7b+2c>0;由于對稱軸為直線x=2,根據(jù)二次函數(shù)的性質(zhì)得到當(dāng)x>2時,y隨x的增大而減。

解:拋物線的對稱軸為直線x=﹣=2,

b=﹣4a,即4a+b=0,(故①正確);

當(dāng)x=﹣3時,y<0,

9a﹣3b+c<0,

即9a+c<3b,(故②錯誤);

拋物線與x軸的一個交點為(﹣1,0),

a﹣b+c=0,

而b=﹣4a,

a+4a+c=0,即c=﹣5a,

8a+7b+2c=8a﹣28a﹣10a=﹣30a,

拋物線開口向下,

a<0,

8a+7b+2c>0,(故③正確);

對稱軸為直線x=2,

當(dāng)﹣1<x<2時,y的值隨x值的增大而增大,

當(dāng)x>2時,y隨x的增大而減小,(故④錯誤).

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,上一點,且,上任一點,于點于點,下列結(jié)論:①是等腰三角形;②;③;④,其中正確的結(jié)論是(

A.①②B.①③④C.①④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了50名學(xué)生,并統(tǒng)計他們平均每天的課外閱讀時間t(單位:min),然后利用所得數(shù)據(jù)繪制成如下不完整的統(tǒng)計表.

課外閱讀時間t

頻數(shù)

百分比

10≤t30

4

8%

30≤t50

8

16%

50≤t70

a

40%

70≤t90

16

b

90≤t110

2

4%

合計

50

100%

請根據(jù)圖表中提供的信息回答下列問題:

1a=   ,b=   ;

(2)將頻數(shù)分布直方圖補充完整;

(3)若全校有900名學(xué)生,估計該校有多少學(xué)生平均每天的課外閱讀時間不少于50min?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.

b2>4ac; 4a-2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(-2,y1),(5,y2)是拋物線上的兩點,則y1y2

上述4個判斷中,正確的是(  )

A. ①② B. ①④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,點邊上的中點,點邊上的動點.將沿AE折疊,點落在點處;將沿折疊,點落在點處.當(dāng)的長度為__________時,點與點能重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+bx+c=0(a≠0)的兩根之和

A. 大于0 B. 等于0 C. 小于0 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種二十四點的游戲,其游戲規(guī)則是這樣的:任取四個113之間的自然數(shù),將這四個數(shù)(每個數(shù)用且只能用一次)進(jìn)行加減乘除四則運算,使其結(jié)果等于24.例如對1,2,34,可作如下運算:(1+2+3)×424(上述運算與4×(123)視為相同方法的運算)現(xiàn)有四個有理數(shù)34,-6,10,運用上述規(guī)則寫出三種不同方法的運算式,可以使用括號,使其結(jié)果等于24.運算式如下:

1____________________________;

2____________________________;

3____________________________;

另有四個有理數(shù)3,-5,7,-13,可通過運算式

4____________________________使其結(jié)果等于24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制了如下尚不完整的統(tǒng)計圖表:

調(diào)查結(jié)果統(tǒng)計表

調(diào)查結(jié)果頻數(shù)分布直方圖 調(diào)查結(jié)果扇形統(tǒng)計圖

請根據(jù)以上圖表,解答下列問題:

(1)填空:這次調(diào)查的樣本容量是 , ;

(2)補全頻數(shù)分布直方圖;

(3)求扇形統(tǒng)計圖中扇形的圓心角度數(shù);

(4)該校共有人,請估計每月零花錢的數(shù)額范圍的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式(組),并將它的解集在數(shù)軸上表示出來.

1; 2

查看答案和解析>>

同步練習(xí)冊答案