【題目】拋物線經(jīng)過點(diǎn)(1,0),且對稱軸為直線,其部分圖象如圖所示.對于此拋物線有如下四個(gè)結(jié)論:①<0; ②;③9a-3b+c=0;④若,則時(shí)的函數(shù)值小于時(shí)的函數(shù)值.其中正確結(jié)論的序號是( )
A.①③B.②④C.②③D.③④
【答案】D
【解析】
①根據(jù)拋物線開口方向、對稱軸、與y軸的交點(diǎn)即可判斷;
②根據(jù)拋物線的對稱軸方程即可判斷;
③根據(jù)拋物線y=ax2+bx+c經(jīng)過點(diǎn)(1,0),且對稱軸為直線x=﹣1可得拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(﹣3,0),即可判斷;
④根據(jù)m>n>0,得出m﹣1和n﹣1的大小及其與﹣1的關(guān)系,利用二次函數(shù)的性質(zhì)即可判斷.
解:①觀察圖象可知:
a<0,b<0,c>0,∴abc>0,
所以①錯(cuò)誤;
②∵對稱軸為直線x=﹣1,
即﹣=﹣1,解得b=2a,即2a﹣b=0,
所以②錯(cuò)誤;
③∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)(1,0),且對稱軸為直線x=﹣1,
∴拋物線與x軸的另一個(gè)交點(diǎn)為(﹣3,0),
當(dāng)a=﹣3時(shí),y=0,即9a﹣3b+c=0,
所以③正確;
∵m>n>0,
∴m﹣1>n﹣1>﹣1,
由x>﹣1時(shí),y隨x的增大而減小知x=m﹣1時(shí)的函數(shù)值小于x=n﹣1時(shí)的函數(shù)值,故④正確;
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順指針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去…,若點(diǎn)A(,0)、B(0,4),則點(diǎn)B2020的橫坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某植物園有一塊足夠大的空地,其中有一堵長為a米的墻,現(xiàn)準(zhǔn)備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開.小俊設(shè)計(jì)了如圖甲和乙的兩種方案:
方案甲中AD的長不超過墻長;方案乙中AD的長大于墻長.
(1)若a=6.
①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長是多少米?
②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?
(2)若0<a<6.5,哪種方案能圍成面積最大的矩形花圃?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt∠AOB的平分線ON上依次取點(diǎn)C,F(xiàn),M,過點(diǎn)C作DE⊥OC,分別交OA,OB于點(diǎn)D,E,以FM為對角線作菱形FGMH.已知∠DFE=∠GFH=120°,F(xiàn)G=FE,設(shè)OC=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關(guān)系式是( )
A. y= B. y= C. y=2 D. y=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰△BCD中,∠DCB=120°,點(diǎn)E滿足∠DEC=60°.
(1)如圖1,點(diǎn)E在邊BD上時(shí),求證:ED=2BE;
(2)如圖2,過點(diǎn)B作DE的垂線交DE的延長線于點(diǎn)F,試探究DE和EF的數(shù)量關(guān)系,并證明;
(3)若∠DEB=150°,直接寫出BE,DE和EC的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.
收集數(shù)據(jù)
從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績 人數(shù) 部門 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結(jié)論:
.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為____________;
.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_____________.(至少從兩個(gè)不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了堅(jiān)持以人民為中心的發(fā)展思想,以不斷改善民生為發(fā)展的根本目的,某機(jī)構(gòu)隨機(jī)對某小區(qū)部分居民進(jìn)行了關(guān)于“社區(qū)服務(wù)工作滿意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表,根據(jù)圖標(biāo)信息,解答下列問題:
滿意度 | 人數(shù) | 所占百分比 |
非常滿意 | 12 | |
滿意 | 54 | |
比較滿意 | ||
不滿意 | 6 |
(1)本次調(diào)查的總?cè)藬?shù)為_______.
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)據(jù)統(tǒng)計(jì),該社區(qū)服務(wù)站平均每天接待居民約1000名,若將“非常滿意”和“消意”作為居民對社區(qū)服務(wù)站服務(wù)工作的肯定,請你估計(jì)該社區(qū)服務(wù)站服務(wù)工作平均每天得到多少名居民的肯定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+ax+b交x軸于A(﹣2,0),B(4,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是拋物線在第一象限上的一點(diǎn),過點(diǎn)P作AC的平行線l,分別交直線BC,y軸于點(diǎn)D,點(diǎn)E.
(1)填空:直線AC的解析式為 ,拋物線的解析式為 ;
(2)當(dāng)CD=時(shí),求OE的長;
(3)當(dāng)DP=DE時(shí),求點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市每天能出售甲、乙兩種肉集裝箱共21箱,且甲集裝箱3天的銷售量與乙集裝箱4天的銷售量相同.
(1)求甲、乙兩種肉類集裝箱每天分別能出售多少箱?
(2)若甲種肉類集裝箱的進(jìn)價(jià)為每箱200元,乙種肉類集裝箱的進(jìn)價(jià)為每箱180元,現(xiàn)超市打算購買甲、乙兩種肉類集裝箱共100箱,且手頭資金不到18080元,則該超市有幾種購買方案?
(3)若甲種肉類集裝箱的售價(jià)為每箱260元,乙種肉類集裝箱的售價(jià)為每箱230元,在(2)的情況下,哪種方案獲利最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com