【題目】如圖,在矩形ABCD中,BC>AB,∠BAD的平分線AF與BD,BC分別交于點(diǎn)E,F(xiàn),點(diǎn)O是BD的中點(diǎn),直線OK∥AF,交AD于點(diǎn)K,交BC于點(diǎn)G.

(1)求證:△DOK≌△BOG;
(2)探究線段AB、AK、BG三者之間的關(guān)系,并證明你的結(jié)論;
(3)若KD=KG,BC=2 ﹣1,求KD的長(zhǎng)度.

【答案】
(1)證明:∵在矩形ABCD中,AD∥BC,

∴∠KDO=∠GBO,∠DKO=BGO.

∵點(diǎn)O是BD的中點(diǎn);

∴DO=BO.

在△DOK和△BOG中,

∴△DOK≌△BOG(AAS).


(2)解:AB+AK=BG;證明如下:

∵四邊形ABCD是矩形;

∴∠BAD=∠ABC=90°,AD∥BC.

又∵AF平分∠BAD,

∴∠BAF=∠BFA=45°.

∴AB=BF.

∵OK∥AF,AK∥FG,

∴四邊形AFGK是平行四邊形.

∴AK=FG.

∵BG=BF+FG;

∴BG=AB+AK.


(3)解:∵四邊形AFGK是平行四邊形.

∴AK=FG,AF=KG

又∵△DOK≌△BOG,且KD=KG,

∴AF=KG=KD=BG.

設(shè)AB=a,則AF=KG=KD=BG= a.

∴AK=2 ﹣1﹣ a,F(xiàn)G=BG﹣BF= a﹣a.

∴2 ﹣1﹣ a= a﹣a.

解得a=1.

∴KD= a=


【解析】(1)在矩形ABCD中,AD∥BC,得到∠KDO=∠GBO,∠DKO=BGO,DO=BO,得到△DOK≌△BOG(AAS);(2)四邊形ABCD是矩形,得到∠BAD=∠ABC=90°,AD∥BC,又AF平分∠BAD,得到∠BAF=∠BFA=45°,AB=BF,由OK∥AF,AK∥FG,得到四邊形AFGK是平行四邊形,得到AK=FG,BG=BF+FG,即BG=AB+AK;(3)四邊形AFGK是平行四邊形,得到AK=FG,AF=KG,又△DOK≌△BOG,且KD=KG,得到AF=KG=KD=BG,設(shè)AB=a,則AF=KG=KD=BG= a,得到AK=2﹣1- a,F(xiàn)G=BG﹣BF= a﹣a,解得a=1,得到KD= a=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:
(1)
(2)x2+4x﹣1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件使其成為菱形(只填一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一個(gè)x的值說(shuō)明“|x|=x”是錯(cuò)誤的,這個(gè)值可以是x=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=2x﹣1一定不經(jīng)過(guò)第________象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車(chē)自駕出游。

[來(lái)

根據(jù)以上信息,解答下列問(wèn)題:

(1)設(shè)租車(chē)時(shí)間為小時(shí),租用甲公司的車(chē)所需費(fèi)用為元,租用乙公司的車(chē)所需費(fèi)用為元,分別求出,關(guān)于的函數(shù)表達(dá)式;

(2)請(qǐng)你幫助小明計(jì)算并選擇哪個(gè)出游方案合算。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:(6a2-16a-5a2-3a+2),其中a2-a-7=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下列各組線段為邊,能組成三角形的是(

A. 2cm、2cm4cmB. 2cm、6cm3cm

C. 8cm、6cm、3cmD. 11cm、4cm6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩輛汽車(chē)分別從A,B兩地同時(shí)出發(fā),沿同一條公路相向而行,已知甲車(chē)勻速行駛;乙車(chē)出發(fā)2h后休息,與甲車(chē)相遇后繼續(xù)行駛,結(jié)果同時(shí)分別到達(dá)B,A兩地.設(shè)甲、乙兩車(chē)與B地的距離分別為y(km),y(km
),甲車(chē)行駛的時(shí)間為x(h),y , y與x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問(wèn)題:

(1)當(dāng)0<x<2時(shí),求乙車(chē)的速度;
(2)求乙車(chē)與甲車(chē)相遇后y與x的關(guān)系式;
(3)當(dāng)兩車(chē)相距20km時(shí),直接寫(xiě)出x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案