如圖,在等腰梯形ABCD中,AB∥CD, 對角線AC⊥BC,∠B=60º,BC=2cm,則梯形ABCD的面積為( )   
A.3 cmB.6 cmC.6cmD.12 cm
A
過點C作CE⊥AB,

∵AC⊥BC,∠B=60°,
∴∠CAB=30°,
∵BC=2cm,
∴AB=4cm,AC=2cm,
∴CE=cm,
∵梯形ABCD是等腰梯形,CD∥AB,
∴∠B=∠DAB=60°,∠CAB=∠DCA=30°,
∵∠CAB=30°,
∴∠DAC=∠DCA=30°,
∴CD=AD=BC=2cm,
∴梯形ABCD的面積=1/2
(AB+CD)×CE=1/2(4+2)×
=3cm2,
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

若正方形的面積是2,則它的對角線長是           。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,AF⊥BD,CE⊥BD,垂足分別為E、F;
(1)連結(jié)AE、CF,得四邊形AFCE,試判斷四邊形AFCE是下列圖形中的哪一種?
①平行四邊形;②菱形;③矩形;
(2)請證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點E,延長BC到點F,使CF=CE,連結(jié)DF,交BE的延長線于點G,連結(jié)OG.

(1)說明:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關系?說明你的結(jié)論;
(3)若BC·BD=,求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

順次連結(jié)四邊形ABCD各邊中點得四邊形EFGH,要使四邊形EFGH為矩形,應添加的條件是                           【   】
A.AB∥DCB.AC=BDC.ACD.AB="DC"

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)如圖,在□ABCD中,點E、F是對角線BD上的兩點,且BEDF
求證:(1)△ABE≌△CDF;(2)AECF

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,用長為18 m的籬笆(虛線部分),兩面靠墻圍成矩形的苗
圃. 問矩形苗圃的一邊長為多少時面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,是四邊形的對角線上兩點,
求證:(1)
(2)四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,平行四邊形ABCD中,∠ABC=60°,AB=4,AD=8,點E、F
分別是邊BC、AD邊的中點,點M是AE與BF的交點,點N是CF與DE的交點,
則四邊形ENFM的周長是    ▲    

查看答案和解析>>

同步練習冊答案