已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長BC到點(diǎn)F,使CF=CE,連結(jié)DF,交BE的延長線于點(diǎn)G,連結(jié)OG.

(1)說明:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?說明你的結(jié)論;
(3)若BC·BD=,求正方形ABCD的面積.
(1)因?yàn)樗倪呅蜛BCD是正方形,所以BC=DC,∠DCB=∠
DCF=90°,而CF=CE,則△BCE≌△DCF.
(2)
由(1)知△BCE≌△DCF,所以∠CDF=∠CBE,且∠CEB=∠
DEG,則∠DGE=∠BCE=90°,又因?yàn)锽E平分∠DBC,所以GF=GD.而O正方形ABCD的中心,則OG是△DBF的中位線,所以
(3)因?yàn)樗倪呅蜛BCD是正方形,所以BC=DC,且∠DCB=90°.在中有,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823005439383567.gif" style="vertical-align:middle;" /> BC·BD=,所以       
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知EF是梯形ABCD的中位線,△DEF的面積為,則梯形ABCD的面積為          cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)C是線段AB上的一個(gè)動(dòng)點(diǎn),△ADC和△CEB是在AB同側(cè)的兩個(gè)等邊三形,DM,EN分別是△ADC和△CEB的高,點(diǎn)C在線段AB上沿著從點(diǎn)A向點(diǎn)B的方向移動(dòng)(不與點(diǎn)A,B重合),連接DE,得到四邊形DMNE.這個(gè)四邊形的面積變化情況為(      ).
A.逐漸增大B.逐漸減小C.始終不變D.先增大后變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(每小題5分,共10分)已知,如圖,四邊形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17

試求:(1)AC的長;  (2)四邊形ABCD的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

平行四邊形一邊長為10,一條對(duì)角線長為6,則它的另一條對(duì)角線長b的取值范圍為    .  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在等腰梯形ABCD中,AB∥CD, 對(duì)角線AC⊥BC,∠B=60º,BC=2cm,則梯形ABCD的面積為( )   
A.3 cmB.6 cmC.6cmD.12 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知菱形的邊長為6,一個(gè)內(nèi)角為,則菱形較短的對(duì)角線長是(  )
A.B.C.3D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知矩形紙片,點(diǎn)的中點(diǎn),點(diǎn)上的一點(diǎn),
,現(xiàn)沿直線將紙片折疊,使點(diǎn)落在紙片上的點(diǎn)處,連結(jié),則與
相等的角的個(gè)數(shù)為                                            【    】  
A.4B.3C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分).如圖,在矩形ABCD中,點(diǎn)E在邊AD上,EF⊥CE且與AB相交于點(diǎn)F,若DE=2,AD+DC=8,且CE=EF,求AE的長。

查看答案和解析>>

同步練習(xí)冊(cè)答案