【題目】在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)D、E分別是斜邊AB和直角邊BC上的點(diǎn),把△ABC沿著直線DE折疊,頂點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B′.
(1)如圖①,如果點(diǎn)B′和點(diǎn)A重合,求CE的長.
(2)如圖②,如果點(diǎn)B′落在直角邊AC的中點(diǎn)上,求BE的長.
【答案】(1)CE的長為;(2)BE=.
【解析】
(1)如圖(1),設(shè)CE=x,則BE=8﹣x;根據(jù)勾股定理列出關(guān)于x的方程,解方程即可解決問題;
(2)如圖(2),首先求出CB′=3;類比(1)中的解法,設(shè)出未知數(shù),列出方程即可解決問題.
(1)如圖(1),設(shè)CE=x,則BE=8﹣x;
由題意得:AE=BE=8﹣x
由勾股定理得:x2+62=(8﹣x)2,
解得:x=,
即CE的長為:;
(2)如圖(2),
∵點(diǎn)B′落在AC的中點(diǎn),
∴CB′=AC=3;
設(shè)CE=x,類比(1)中的解法,可列出方程:x2+32=(8﹣x)2
解得:x=.
即CE的長為:,
∴BE==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因?yàn)?/span>sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因?yàn)?/span>sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地當(dāng)α為銳角時(shí)有sin(180°+α)=﹣sinα,由此可知:sin240°=( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由“趙爽弦圖”變化得到的,它由八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2、S3.若S1+S2+S3=15,則S2的值是( )
A. 5B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入夏季用電高峰季節(jié),市供電局維修隊(duì)接到緊急通知:要到 30 千米遠(yuǎn)的某鄉(xiāng)鎮(zhèn)進(jìn)行緊急搶修,維修工騎摩托車先走,15 分鐘后,搶修車裝載所需材料出發(fā), 結(jié)果兩車同時(shí)到達(dá)搶修點(diǎn),已知搶修車的速度是摩托車速度的 1.5 倍,求兩種車的速 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好的治理西流湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買 10 臺(tái)污水處理設(shè)備.現(xiàn)有 A、B 兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:
A 型 | B 型 | |
價(jià)格(萬元/臺(tái)) | a | b |
處理污水量(噸/月) | 240 | 200 |
經(jīng)調(diào)查:購買一臺(tái) A 型設(shè)備比購買一臺(tái) B 型設(shè)備多 2 萬元,購買 2 臺(tái) A 型設(shè)備比購買 3 臺(tái) B 型設(shè)備少 6 萬元.
(1)求 a,b 的值;
(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過 105 萬元,你認(rèn)為該公司 有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理西流湖的污水量不低于 2040 噸,為了節(jié) 約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OACB的頂點(diǎn)O是坐標(biāo)原點(diǎn),頂點(diǎn)A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點(diǎn).若E為邊OA上的一個(gè)動(dòng)點(diǎn),當(dāng)△CDE的周長最小時(shí),則點(diǎn)E的坐標(biāo)____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某商場計(jì)劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016四川省廣安市)某水果積極計(jì)劃裝運(yùn)甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運(yùn)甲、乙、丙三種水果的重量及利潤.
(1)用8輛汽車裝運(yùn)乙、丙兩種水果共22噸到A地銷售,問裝運(yùn)乙、丙兩種水果的汽車各多少輛?
(2)水果基地計(jì)劃用20輛汽車裝運(yùn)甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運(yùn)甲水果的汽車為m輛,則裝運(yùn)乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)
(3)在(2)問的基礎(chǔ)上,如何安排裝運(yùn)可使水果基地獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,過點(diǎn)A作AD⊥l,過點(diǎn)B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.
(2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).
(3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQ繞P點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com