【題目】已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,連接BD(如圖a),點(diǎn)P沿梯形的邊,從點(diǎn)A→B→C→D→A移動,設(shè)點(diǎn)P移動的距離為x,BP=y.
(1)求證:∠A=2∠CBD;
(2)當(dāng)點(diǎn)P從點(diǎn)A移動到點(diǎn)C時(shí),y與x的函數(shù)關(guān)系如圖(b)中的折線MNQ所示,試求CD的長.
(3)在(2)的情況下,點(diǎn)P從A→B→C→D→A移動的過程中,△BDP是否可能為等腰三角形?若能,請求出所有能使△BDP為等腰三角形的x的取值;若不能,請說明理由.
【答案】(1)見解析;(2)1;(3)△BDP可能為等腰三角形,能使△BDP為等腰三角形的x的取值為:0或3或5﹣或或10或9+.
【解析】
(1)根據(jù)等腰三角形兩個(gè)底角相等可以進(jìn)一步證明∠A=2∠CBD,
(2) 根據(jù)題意描述,可以確定AB=5,AB+BC=8,再通過作DE⊥AB于來構(gòu)造直角三角形可以求出CD長度.
(3) 根據(jù)題目描述分情況來討論哪個(gè)點(diǎn)為等腰三角形頂點(diǎn),進(jìn)而列方程進(jìn)行求出P點(diǎn)位置情況.
(1)證明:∵AB∥CD,BC⊥AB,AB=AD,
∴∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,
∴∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,
∴∠A=2∠CBD;
(2)解:由圖(b)得:AB=5,AB+BC=8,
∴BC=3,作DE⊥AB于E,如圖所示:
則DE=BC=3,CD=BE,
∵AD=AB=5,
∴AE==4,
∴CD=BE=AB﹣AE=1;
(3)解:可能;理由如下:
分情況討論:
①點(diǎn)P在AB邊上時(shí),
當(dāng)PD=PB時(shí),P與A重合,x=0;
當(dāng)DP=DB時(shí),BP=2BE=2,
∴AP=3,
∴x=3;
當(dāng)BP=BD==時(shí),AP=5﹣,
即x=5﹣;
②點(diǎn)P在BC上時(shí),存在PD=PB,
此時(shí),x=5+=;
③點(diǎn)P在AD上時(shí),
當(dāng)BP=BD=時(shí),x=5+3+1+2=10;
當(dāng)DP=DB=時(shí),x=5+3+1+=9+;
綜上所述:△BDP可能為等腰三角形,能使△BDP為等腰三角形的x的取值為:0或3或5﹣或或10或9+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長五個(gè)維度進(jìn)行了綜合評價(jià).評價(jià)小組在選取的某中學(xué)七年級全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時(shí)間,并繪制成如下不完整的統(tǒng)計(jì)圖. 根據(jù)上述信息,解答下列問題:
(1)本次抽取的學(xué)生人數(shù)是 ______ ;扇形統(tǒng)計(jì)圖中的圓心角α等于 ______ ;補(bǔ)全統(tǒng)計(jì)直方圖;
(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測試,每5人一組進(jìn)行.在隨機(jī)分組時(shí),小紅、小花兩名女生被分到同一個(gè)小組,請用列表法或畫樹狀圖求出她倆在抽道次時(shí)抽在相鄰兩道的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=50°,過點(diǎn)O引射線OC,若∠AOC:∠BOC=2:3,OD平分∠AOB,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請同學(xué)們完成下列甲,乙兩種商品從包裝到銷售的一系列問題;
(1)某包裝車間有22名工人,每人每小時(shí)可以包裝120個(gè)甲商品或者200個(gè)乙商品,且1個(gè)甲商品需要搭配2個(gè)乙商品裝箱,為使每天包裝的甲商品和乙商品剛好配置,應(yīng)安排包裝甲商品和乙商品的工人各多少名?
(2)某社區(qū)超市第一次用6000元購進(jìn)一批甲、乙兩種商品,其中甲商品的件數(shù)比乙商品件數(shù)的2倍少30件,兩種商品的進(jìn)價(jià)和售價(jià)如下圖所示:
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 22 | 30 |
售價(jià)(元/件) | 29 | 40 |
①超市將這批貨全部售出一共可以獲利多少元?
②該超市第二次分別以第一次同樣的進(jìn)價(jià)購進(jìn)第二批甲、乙兩種商品,其中乙商品的件數(shù)是第一批乙商品件數(shù)的3倍,甲商品的件數(shù)不變,甲商品按照原售價(jià)銷售,乙商品在原價(jià)的基礎(chǔ)上打折銷售,第二批商品全部售出后獲得的總利潤比第一批獲得的總利潤多720元,求第二批乙商品在原價(jià)基礎(chǔ)上打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AM是△ABC的中線,D是線段AM的中點(diǎn),AM=AC,AE∥BC.求證:四邊形EBCA是等腰梯形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)寧市全運(yùn)會會期間,鄒城市投資150萬元引進(jìn)一項(xiàng)大型游樂設(shè)施.若不計(jì)維修保養(yǎng)費(fèi)用,預(yù)計(jì)開放后每月可創(chuàng)收33萬元.而該游樂設(shè)施開放后,從第1個(gè)月到第x個(gè)月的維修保養(yǎng)費(fèi)用累計(jì)為y(萬元),且y=ax2+ bx;若將創(chuàng)收扣除投資和維修保養(yǎng)費(fèi)用 稱為游樂場的純收益g(萬元),g也是關(guān)于 x的二次函數(shù);
(1)若維修保養(yǎng)費(fèi)用第1個(gè)月為2萬元,第2個(gè)月為4萬元.求y關(guān)于x的解析式;
(2)求純收益g關(guān)于x的解析式;
(3)問設(shè)施開放幾個(gè)月后,游樂場的純收益達(dá)到最大;幾個(gè)月后,能收回投資?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺的“朗讀者”節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生“多讀書,讀好書“,某校對八年級部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合計(jì) | 50 | c |
我們定義頻率=,比如由表中我們可以知道在這次隨機(jī)調(diào)查中抽樣人數(shù)為50人課外閱讀量為6本的同學(xué)為18人,因此這個(gè)人數(shù)對應(yīng)的頻率就是=0.36.
(1)統(tǒng)計(jì)表中的a、b、c的值;
(2)請將頻數(shù)分布表直方圖補(bǔ)充完整;
(3)求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù);
(4)若該校八年級共有600名學(xué)生,你認(rèn)為根據(jù)以上調(diào)查結(jié)果可以估算分析該校八年級學(xué)生課外閱讀量為7本和8本的總?cè)藬?shù)為多少嗎?請寫出你的計(jì)算過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD是ABCD對角線,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F.
(1)求證:△ADE≌△CBF;
(2)連結(jié)CE,AF,求證:四邊形AFCE為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,回答下列問題:
數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問題。例如,兩個(gè)有理數(shù)在數(shù)軸上對應(yīng)的點(diǎn)之間的距離可以用這兩個(gè)數(shù)的差的絕對值表示;
在數(shù)軸上,有理數(shù)3與1對應(yīng)的兩點(diǎn)之間的距離為|31|=2;
在數(shù)軸上,有理數(shù)5與2對應(yīng)的兩點(diǎn)之間的距離為|5(2)|=7;
在數(shù)軸上,有理數(shù)2與3對應(yīng)的兩點(diǎn)之間的距離為|23|=5;
在數(shù)軸上,有理數(shù)8與5對應(yīng)的兩點(diǎn)之間的距離為|8(5)|=3;……
如圖1,在數(shù)軸上有理數(shù)a對應(yīng)的點(diǎn)為點(diǎn)A,有理數(shù)b對應(yīng)的點(diǎn)為點(diǎn)B,A,B兩點(diǎn)之間的距離表示為|ab|或|ba|,記為|AB|=|ab|=|ba|.
(1)數(shù)軸上有理數(shù)10與5對應(yīng)的兩點(diǎn)之間的距離等于___;數(shù)軸上有理數(shù)x與5對應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為___;若數(shù)軸上有理數(shù)x與1對應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于___;
(2)如圖2,點(diǎn)M,N,P是數(shù)軸上的三點(diǎn),點(diǎn)M表示的數(shù)為4,點(diǎn)N表示的數(shù)為2,動點(diǎn)P表示的數(shù)為x.
①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x4|=___;若|x+2|+|x4|═10,則x=___;
②根據(jù)閱讀材料及上述各題的解答方法,|x+2|+|x|+|x2|+|x4|的最小值等于___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com