【題目】在平面直角坐標(biāo)系中,將點(diǎn)P(-2,3)沿x軸方向向右平移3個(gè)單位得到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是( )
A.(-2,6)
B.(-2,0)
C.(1,3)
D.(-5,3)

【答案】C
【解析】將點(diǎn)P(-2,3)向右平移3個(gè)單位得到點(diǎn)Q,即點(diǎn)Q的橫坐標(biāo)加3,縱坐標(biāo)不變,則點(diǎn)Q的坐標(biāo)是(1,3),故選C.
根據(jù)坐標(biāo)系內(nèi)點(diǎn)的坐標(biāo)的平移規(guī)律解題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a經(jīng)過點(diǎn)A(1,6),和點(diǎn)B(﹣3,﹣2).

(1)求直線a的解析式;

(2)求直線與坐標(biāo)軸的交點(diǎn)坐標(biāo);

(3)求S△AOB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣23的底數(shù)是________,指數(shù)是________,結(jié)果是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分式方程的解法:
(1)方程兩邊都乘,去分母,化為方程;
(2)解這個(gè)方程;
(3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】確定圓的位置,確定圓的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組為測(cè)得校園里旗桿AB的高度,在操場(chǎng)的平地上選擇一點(diǎn)C,測(cè)得旗桿頂端A的仰角為30°,再向旗桿的方向前進(jìn)16米,到達(dá)點(diǎn)D處(C、D、B三點(diǎn)在同一直線上),又測(cè)得旗桿頂端A的仰角為45°,請(qǐng)計(jì)算旗桿AB的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的情形進(jìn)行研究.

【初步思考】

我們不妨將問題用符號(hào)語(yǔ)言表示為:在ABCDEF中,AC=DF,BC=EFB=E,然后,對(duì)∠B進(jìn)行分類,可分為B是直角、鈍角、銳角三種情況進(jìn)行探究.

【深入探究】

第一種情況:當(dāng)∠B是直角時(shí),ABC≌△DEF

(1)如圖①,在ABCDEF,AC=DF,BC=EFB=E=90°,根據(jù)______,可以知道RtABCRtDEF

第二種情況:當(dāng)∠B是鈍角時(shí),ABC≌△DEF

(2)如圖②,在ABCDEF,AC=DFBC=EF,B=E,且∠B、E都是鈍角,求證:ABC≌△DEF

第三種情況:當(dāng)∠B是銳角時(shí),ABCDEF不一定全等.

(3)在ABCDEF,AC=DF,BC=EF,B=E,且∠B、E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出DEF,使DEFABC不全等.(不寫作法,保留作圖痕跡)

(4)B還要滿足什么條件,就可以使ABC≌△DEF?請(qǐng)直接寫出結(jié)論:在ABCDEF中,AC=DFBC=EF,B=E,且∠B、E都是銳角,若______,則ABC≌△DEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的提高,家用轎車越來越多地進(jìn)入家庭,小明家中買了一輛小轎車,他連續(xù)記錄了7天中每天行駛的路程(如下表),以50 km為標(biāo)準(zhǔn),多于50 km的記為“+”,不足50 km的記為“-”,剛好50 km的記為“0”

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

8

11

14

0

16

41

8

(1)請(qǐng)求出這七天中平均每天行駛多少千米?

(2)若每天行駛100 km需用汽油6升,汽油價(jià)6.2/升,請(qǐng)估計(jì)小明家一個(gè)月(30天計(jì))的汽油費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.

(1)求證:AD=AF;

(2)求證:BD=EF;

(3)試判斷四邊形ABNE的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案