【題目】某射擊隊為了解運動員的年齡情況,作了一次年齡調查,根據射擊運動員的年齡(單位:歲),繪制出如圖的統(tǒng)計圖.
(1)求m的值;
(2)該射擊隊運動員年齡是眾數是 .
(3)求該射擊隊運動員的平均年齡;
(4)若該射擊隊有13歲運動員2人,則該射擊隊中14歲運動員有幾人?
【答案】(1) 20;(2)14;(3)該射擊隊運動員的平均年齡是15歲;(4) 6.
【解析】
(1) 根據各部分所占的百分比和為1,即可求出m的值;
(2)根據眾數定義即可解決問題;
(3)根據加權平均數公式計算即可;
(4) 射擊隊有13歲運動員2人,根據所占的百分比,求出射擊隊總人數,即可求出該射擊隊中14歲運動員人數.
(1)1-10%-30%-25%-15%=20%.故m的值是20;
(2)14.
(3)13×10%+14×30%+15×25%+16×20%+17×15%=15(歲);
故該射擊隊運動員的平均年齡是15歲;
(4) 射擊隊總人數為:2÷10%=20,則14歲運動員人數為:20×30%=6(人)
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2-2ax+c與x軸交于A,B兩點,與y軸正半軸交于點C,且A(-1,0).
(1)一元二次方程ax2-2ax+c=0的解是 ;
(2)一元二次不等式ax2-2ax+c>0的解集是 ;
(3)若拋物線的頂點在直線y=2x上,求此拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點D,過點D的切線交AC的延長線于點G.
求證:(1)DG⊥AG;
(2)AG+CG=AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】溫州市處于東南沿海,夏季經常遭受臺風襲擊,一次,溫州氣象局測得臺風中心在溫州市的正西方向300千米的處,以每小時千米的速度向東偏南的方向移動,距臺風中心200千米的范圍是受臺風嚴重影響的區(qū)域,試問:
(1)臺風中心在移動過程中離溫州市最近距離是多少千米?
(2)溫州市是否受臺風影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風嚴重影響的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=4,點P是AB邊上一個動點,過點P作AB的垂線交AC邊與點D,以PD為邊作∠DPE=60°,PE交BC邊與點E.
(1)當點D為AC邊的中點時,求BE的長;
(2)當PD=PE時,求AP的長;
(3)設AP 的長為,四邊形CDPE的面積為,請直接寫出與的函數解析式及自變量的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】操作與證明:
如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現:
(2)在(1)的條件下,請判斷線段MD與MN的關系,得出結論;
結論:DM、MN的關系是: ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C旋轉180°,其他條件不變,則(2)中的結論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com