精英家教網 > 初中數學 > 題目詳情

【題目】某射擊隊為了解運動員的年齡情況,作了一次年齡調查,根據射擊運動員的年齡(單位:歲),繪制出如圖的統(tǒng)計圖.

(1)m的值;

(2)該射擊隊運動員年齡是眾數是 .

(3)求該射擊隊運動員的平均年齡;

(4)若該射擊隊有13歲運動員2,則該射擊隊中14歲運動員有幾人?

【答案】(1) 20;(2)14;(3)該射擊隊運動員的平均年齡是15;(4) 6.

【解析】

(1) 根據各部分所占的百分比和為1,即可求出m的值;
(2)根據眾數定義即可解決問題;
(3)根據加權平均數公式計算即可;

(4) 射擊隊有13歲運動員2,根據所占的百分比,求出射擊隊總人數,即可求出該射擊隊中14歲運動員人數.

(1)1-10%-30%-25%-15%=20%.m的值是20;

(2)14.

(3)13×10%+14×30%+15×25%+16×20%+17×15%=15(歲);

故該射擊隊運動員的平均年齡是15;

(4) 射擊隊總人數為:2÷10%=20,14歲運動員人數為:20×30%=6()

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】無論取什么實數時,P總在直線,且點也在直線,的值為__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=ax2-2ax+cx軸交于A,B兩點,與y軸正半軸交于點C,且A(-1,0).

(1)一元二次方程ax2-2ax+c=0的解是 ;

(2)一元二次不等式ax2-2ax+c>0的解集是 ;

(3)若拋物線的頂點在直線y=2x上,求此拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=6,BD=6,EBC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有兩角及其中一角的平分線對應相等的兩個三角形全等_____命題.(填

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點D,過點D的切線交AC的延長線于點G.

求證:(1)DG⊥AG;

(2)AG+CG=AB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】溫州市處于東南沿海,夏季經常遭受臺風襲擊,一次,溫州氣象局測得臺風中心在溫州市的正西方向300千米的處,以每小時千米的速度向東偏南方向移動,距臺風中心200千米的范圍是受臺風嚴重影響的區(qū)域,試問:

1)臺風中心在移動過程中離溫州市最近距離是多少千米?

2)溫州市是否受臺風影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風嚴重影響的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,∠A=30°AB=4,點PAB邊上一個動點,過點PAB的垂線交AC邊與點D,以PD為邊作∠DPE=60°,PEBC邊與點E.

1)當點DAC邊的中點時,求BE的長;

2)當PD=PE時,求AP的長;

3)設AP 的長為,四邊形CDPE的面積為,請直接寫出的函數解析式及自變量的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】操作與證明:

如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點EF分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN

1)連接AE,求證:△AEF是等腰三角形;

猜想與發(fā)現:

2)在(1)的條件下,請判斷線段MDMN的關系,得出結論;

結論:DM、MN的關系是:   

拓展與探究:

3)如圖2,將圖1中的直角三角板ECF繞點C旋轉180°,其他條件不變,則(2)中的結論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案