【題目】如圖1,Pmn)在拋物線y=ax2-4axa0)上,E為拋物線的頂點(diǎn).

1)求點(diǎn)E的坐標(biāo)(用含a的式子表示);

2)若點(diǎn)P在第一象限,線段OP交拋物線的對(duì)稱軸于點(diǎn)C,過(guò)拋物線的頂點(diǎn)Ex軸的平行線DE,過(guò)點(diǎn)Px軸的垂線交DE于點(diǎn)D,連接CD,求證:CDOE;

3)如圖2,當(dāng)a=1,且將圖1中的拋物線向上平移3個(gè)單位,與x軸交于AB兩點(diǎn),平移后的拋物線的頂點(diǎn)為Q,P是其x軸上方的對(duì)稱軸上的動(dòng)點(diǎn),直線AP交拋物線于另一點(diǎn)D,分別過(guò)QDx軸、y軸的平行線交于點(diǎn)E,且∠EPQ=2APQ,求點(diǎn)P的坐標(biāo).

【答案】(1) E(2,﹣4a);(2)見解析;(3) P(2,+1).

【解析】

(1)將原式提取公因式然后化簡(jiǎn)即可解答

(2)設(shè)直線OE的解析式為:y=k x,把E點(diǎn)代入可得直線OE的解析式為:y=﹣2ax,由P(m,n)得直線OP的解析式為:y=,得到C(2,),然后設(shè)直線CD的解析式為:y=kx+b,得到:k=﹣2a,即可解答

(3)當(dāng)a=1時(shí),拋物線解析式為:y=x2﹣4x,向上平移3個(gè)單位得新的拋物線解析式為:y=x2﹣4x+3=(x﹣2)2﹣1,然后設(shè)P(2,t),可得AP的解析式為:y=tx﹣t,D(3+t,t2+2t),Q(2,﹣1),E(3+t,﹣1),再設(shè)PE交x軸于F,即可解答

解:(1)y=ax2﹣4ax=a(x2﹣4x+4﹣4)=a(x﹣2)2﹣4a,

∴E(2,﹣4a);

(2)設(shè)直線OE的解析式為:y=kx,

把E(2,﹣4a)代入得:2k=﹣4a,

k=﹣2a,

∴直線OE的解析式為:y=﹣2ax,

由P(m,n)得直線OP的解析式為:y=

∴當(dāng)x=2時(shí),y= ,即C(2,),

∵D(m,﹣4a),

設(shè)直線CD的解析式為:y=kx+b,

將點(diǎn)D和C的坐標(biāo)代入得: (n=am2﹣4am),

解得:k=﹣2a,

根據(jù)兩直線系數(shù)相等,

∴OE∥CD;

(3)如圖2,當(dāng)a=1時(shí),拋物線解析式為:y=x2﹣4x,

向上平移3個(gè)單位得新的拋物線解析式為:y=x2﹣4x+3=(x﹣2)2﹣1,

∴Q(2,﹣1),A(1,0),B(3,0),

設(shè)P(2,t),

可得AP的解析式為:y=tx﹣t,

聯(lián)立方程組為: ,解得: ,

∴D(3+t,t2+2t),

∵Q(2,﹣1),

∴E(3+t,﹣1),

∴PQ=QE=t+1,

∴∠EPQ=45°,

∵∠EPQ=2∠APQ,

∴∠APQ=22.5°,

設(shè)PE交x軸于F,

∵∠DEP=45°,

∴ME=FM=1,

∴∠FPA=∠PAF=67.5°,

∴PF=AF=t+1,

∵FP= t,

t=t+1,

t= +1,

∴P(2, +1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一次函數(shù)ymx+n和二次函數(shù)ymx2+nx+1,其中m0,

1)若二次函數(shù)ymx2+nx+1經(jīng)過(guò)點(diǎn)(2,0),(3,1),試分別求出兩個(gè)函數(shù)的解析式.

2)若一次函數(shù)ymx+n經(jīng)過(guò)點(diǎn)(20),且圖象經(jīng)過(guò)第一、三象限.二次函數(shù)ymx2+nx+1經(jīng)過(guò)點(diǎn)(a,y1)和(a+1y2),且y1y2,請(qǐng)求出a的取值范圍.

3)若二次函數(shù)ymx2+nx+1的頂點(diǎn)坐標(biāo)為Ah,k)(h0),同時(shí)二次函數(shù)yx2+x+1也經(jīng)過(guò)A點(diǎn),已知﹣1h1,請(qǐng)求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題發(fā)現(xiàn):如圖1,在RtABC中,ABAC,DBC邊上一點(diǎn)(不與點(diǎn)BC重合)將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BDCE的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)探究證明:如圖2,在RtABCRtADE中,ABAC,ADAE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC的延長(zhǎng)線上時(shí),連接EC,寫出此時(shí)線段AD,BDCD之間的等量關(guān)系,并證明;

3)拓展延仲:如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC45°.若BF13,CF5,請(qǐng)直接寫出AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)(1)班班主任對(duì)本班學(xué)生進(jìn)行了我最喜歡的課外活動(dòng)的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類(記為A)、音禾類(記為B)、球類(記為C)、其他類(記為D).根據(jù)調(diào)査結(jié)果發(fā)現(xiàn)該班每個(gè)學(xué)生都進(jìn)行了登記且每人只登記了一種自己最喜歡的課外活動(dòng).班主任根據(jù)調(diào)査情況把學(xué)生進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中所給信息解答下列同題:

1)七年級(jí)(1)班學(xué)生總?cè)藬?shù)為______人,扇形統(tǒng)計(jì)圖中D類所對(duì)應(yīng)扇形的圓心角為______度,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A4名學(xué)生中有兩名學(xué)生擅長(zhǎng)書法,另兩名學(xué)生擅長(zhǎng)繪畫.班主任現(xiàn)從A4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請(qǐng)你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長(zhǎng)書法,另一名擅長(zhǎng)繪畫的概率.

3)如果全市有5萬(wàn)名初中生,那么全市初中生中,喜歡球類的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、Bx軸的上方,∠AOB90°,OAOB分別與函數(shù)、的圖象交于AB兩點(diǎn),以OAOB為鄰邊作矩形AOBC.當(dāng)點(diǎn)Cy軸上時(shí),分別過(guò)點(diǎn)A和點(diǎn)BAEx軸,BFx軸,垂足分別為EF,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=y軸交于點(diǎn)A,頂點(diǎn)為B,直線ly=-x+b經(jīng)過(guò)點(diǎn)A,與拋物線的對(duì)稱軸交于點(diǎn)C,點(diǎn)P是對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),若AP+PC的值最小,則點(diǎn)P的坐標(biāo)為(

A. 31

B. 3,

C. 3,

D. 3,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了慶祝中國(guó)人民海軍成立70周年,某市舉行了海軍知識(shí)競(jìng)賽,為了了解競(jìng)賽成績(jī)的情況,隨機(jī)抽查了部分參賽學(xué)生的成績(jī),整理并制作出如下的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,如圖所示。請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:

(1)在表中:m=___,n=___

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若成績(jī)?cè)?/span>90分以上(含90分)能獲獎(jiǎng),請(qǐng)你估計(jì)該是所有參賽的4500名中學(xué)生中大約有多少人能獲獎(jiǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=

(1)求a,k的值及點(diǎn)B的坐標(biāo);

(2)觀察圖象,請(qǐng)直接寫出不等式ax﹣1≥的解集;

(3)在y軸上存在一點(diǎn)P,使得PDCODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】春曉中學(xué)為開展校園科技節(jié)活動(dòng),計(jì)劃購(gòu)買A型、B型兩種型號(hào)的航模.若購(gòu)買8個(gè)A型航模和5個(gè)B型航模需用2200元;若購(gòu)買4個(gè)A型航模和6個(gè)B型航模需用1520元.求A,B兩種型號(hào)航模的單價(jià)分別是多少元.

查看答案和解析>>

同步練習(xí)冊(cè)答案