【題目】中秋節(jié)期間,大潤(rùn)發(fā)超市將購(gòu)進(jìn)一批月餅進(jìn)行銷(xiāo)售,已知購(gòu)進(jìn)4盒甲品牌月餅和6盒乙品牌月餅需260,購(gòu)進(jìn)5盒甲品牌月餅和4盒乙品牌月餅需220.甲乙兩種品牌月餅以相同的售價(jià)銷(xiāo)售,甲品牌月餅的銷(xiāo)量(盒)與售價(jià)(元)之間的關(guān)系為;當(dāng)售價(jià)為40元時(shí),乙品牌月餅可銷(xiāo)售100盒,售價(jià)每提高1元,少銷(xiāo)售5.

(1)求甲乙兩種品牌月餅每盒的進(jìn)價(jià)分別為多少元?

(2)當(dāng)乙品牌月餅的售價(jià)為多少元時(shí),乙品牌月餅的銷(xiāo)售總利潤(rùn)最大?此時(shí)甲乙兩種品牌月餅的銷(xiāo)售總利潤(rùn)為多少?

(3)當(dāng)甲品牌月餅的銷(xiāo)售量不低乙品牌月餅的銷(xiāo)售量的,若使兩種品牌月餅的總利潤(rùn)最高,求此時(shí)的定價(jià)為多少?

【答案】(1)甲品牌進(jìn)價(jià)為20元,乙品牌進(jìn)價(jià)為30;(2)兩種品牌銷(xiāo)售總利潤(rùn)為2125;(3)x=36時(shí),取得最大值.

【解析】

1)根據(jù)題意列出方程求出甲品牌和乙品牌的進(jìn)價(jià).

2)由題意得W ,將其進(jìn)行化簡(jiǎn)為開(kāi)口向下的頂點(diǎn)式即可求出乙的售價(jià)再求出總利潤(rùn).

3)根據(jù)不等式400-8x≥300-5xW進(jìn)行求解,得到此時(shí)的定價(jià).

1)解:設(shè)甲品牌進(jìn)價(jià)為a元,乙品牌進(jìn)價(jià)為b元,

由題意可得

解得

2)由題意得

當(dāng)售價(jià)為45元時(shí),乙品牌月餅銷(xiāo)售總利潤(rùn)最高,為1125

當(dāng)售價(jià)為45元時(shí),甲品牌月餅銷(xiāo)售利潤(rùn)為

兩種品牌銷(xiāo)售總利潤(rùn)為2125

3)由不等式400-8x≥300-5x,得x≤36,

由題意得對(duì)稱(chēng)軸為505/13,

故在x=36時(shí),取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的直徑,過(guò)點(diǎn)作,交弦于點(diǎn),交于點(diǎn),且使.

1)求證:的切線;

2)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)E,FG,H是矩形ABCD各邊的中點(diǎn),AB2.4,BC3.4.動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿ABCDA勻速運(yùn)動(dòng),到點(diǎn)A停止,設(shè)點(diǎn)M運(yùn)動(dòng)的路程為x,點(diǎn)M到四邊形EFGH的某一個(gè)頂點(diǎn)的距離為y,如果表示y關(guān)于x的函數(shù)關(guān)系的圖象如圖2所示,那么四邊形EFGH的這個(gè)頂點(diǎn)是( 。

A. 點(diǎn)EB. 點(diǎn)FC. 點(diǎn)GD. 點(diǎn)H

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊ABx軸上,點(diǎn)B坐標(biāo)(﹣3,0),點(diǎn)Cy軸正半軸上,且sinCBO=,點(diǎn)P從原點(diǎn)O出發(fā),以每秒一個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng),移動(dòng)時(shí)間為t(0≤t≤5)秒,過(guò)點(diǎn)P作平行于y軸的直線l,直線l掃過(guò)四邊形OCDA的面積為S.

(1)求點(diǎn)D坐標(biāo).

(2)求S關(guān)于t的函數(shù)關(guān)系式.

(3)在直線l移動(dòng)過(guò)程中,l上是否存在一點(diǎn)Q,使以B、C、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,直接寫(xiě)出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為2的菱形ABCD,BD=2,E、F分別是AD,CD上的動(dòng)點(diǎn)(包含端點(diǎn)),且AE+CF=2,則線段EF長(zhǎng)的最小值是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠對(duì)某種新型材料進(jìn)行加工,首先要將其加溫,使這種材料保持在一定溫度范圍內(nèi)方可加工,如圖是在這種材料的加工過(guò)程中,該材料的溫度y)時(shí)間xmin)變化的數(shù)圖象,已知該材料,初始溫度為15℃,在溫度上升階段,yx成一次函數(shù)關(guān)系,在第5分鐘溫度達(dá)到60℃后停止加溫,在溫度下降階段,yx成反比例關(guān)系.

1)寫(xiě)出該材料溫度上升和下降階段,yx的函數(shù)關(guān)系式:

①上升階段:當(dāng)0≤x≤5時(shí),y   

②下降階段:當(dāng)x5時(shí),y   

2)根據(jù)工藝要求,當(dāng)材料的溫度不低于30℃,可以進(jìn)行產(chǎn)品加工,請(qǐng)問(wèn)在圖中所示的溫度變化過(guò)程中,可以進(jìn)行加工多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b<0;abc>0;4a2b+c>0;a+c>0,其中正確結(jié)論的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把a(bǔ)、b兩個(gè)數(shù)中較小的數(shù)記作min{a,b},直線y=kx﹣k﹣2(k0)與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個(gè)交點(diǎn),則k的取值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、Ex軸上,CFy軸于點(diǎn)B(0,2),且矩形其面積為8,此拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案