科目: 來源: 題型:
把拋物線y=(x+1)2向下平移2個單位,再向右平移1個單位,所得到的拋物線是( ).
(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x2+2 (D)y=x2-2
查看答案和解析>>
科目: 來源: 題型:
如圖,平面直角坐標系中,矩形OABC的對角線AC=12,tan∠ACO=,
(1)求B、C兩點的坐標;
(2)把矩形沿直線DE對折使點C落在點A處,DE與AC相交于點F,求直線DE的解析式;
(3)若點M在直線DE上,平面內是否存在點N,使以O、F、M、N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
某農(nóng)場的一個家電商場為了響應國家家電下鄉(xiāng)的號召,準備用不超過105700元購進40臺電腦,其中A型電腦每臺進價2500元,B型電腦每臺進價2800元,A型每臺售價3000元,B型每臺售價3200元,預計銷售額不低于123200元.設A型電腦購進x臺、商場的總利潤為y(元).
(1)請你設計出進貨方案;
(2)求出總利潤y(元)與購進A型電腦x(臺)的函數(shù)關系式,并利用關系式說明哪種方案的利潤最大,最大利潤是多少元?
(3)商場準備拿出(2)中的最大利潤的一部分再次購進A型和B型電腦至少各兩臺,另一部分為地震災區(qū)購買單價為500元的帳篷若干頂.在錢用盡三樣都購買的前提下請直接寫出購買A型電腦、B型電腦和帳篷的方案.
查看答案和解析>>
科目: 來源: 題型:
已知∠ACD=90°,MN是過點A的直線,AC=DC,DB⊥MN于點B,如圖(1).易證BD+AB=CB,過程如下:
過點C作CE⊥CB于點C,與MN交于點E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四邊形ACDB內角和為360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.
(1)當MN繞A旋轉到如圖(2)和圖(3)兩個位置時,BD、AB、CB滿足什么樣關系式,請寫出你的猜想,并對圖(2)給予證明.
(2)MN在繞點A旋轉過程中,當∠BCD=30°,BD=時,則CD= 2 ,CB= +1 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com