科目: 來源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點坐標;
(2)如圖2,若P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點共線,求此時P點坐標及∠APB的度數.
查看答案和解析>>
科目: 來源: 題型:
【題目】在日歷上,我們可以發(fā)現(xiàn)其中某些數滿足一定的規(guī)律,如圖是2020年1月份的日歷.如圖所選擇的兩組四個數,分別將每組數中相對的兩數相乘,再相減,例如:9×11﹣3×17= ,12×14﹣6×20= ,不難發(fā)現(xiàn),結果都是 .
(1)請將上面三個空補充完整;
(2)請你利用整式的運算對以上規(guī)律進行證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.
(1)若∠ABE=60°,求∠CDA的度數;
(2)若AE=2,BE=1,CD=4.求四邊形AECD的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DE⊥AC于E.
(1)求證:DE為⊙O的切線;
(2)G是ED上一點,連接BE交圓于F,連接AF并延長交ED于G.若GE=2,AF=3,求EF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年平昌冬奧會在2月9日到25日在韓國平昌郡舉行,為了調查中學生對冬奧會比賽項目的了解程度,某中學在學生中做了一次抽樣調查,調查結果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據調查統(tǒng)計結果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.
對冬奧會了解程度的統(tǒng)計表
對冬奧會的了解程度 | 百分比 |
A非常了解 | 10% |
B比較了解 | 15% |
C基本了解 | 35% |
D不了解 | n% |
(1)n= ;
(2)扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是 ;
(3)請補全條形統(tǒng)計圖;
(4)根據調查結果,學校準備開展冬奧會的知識競賽,某班要從“非常了解”程度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標上數字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數字和為偶數,則小明去,否則小剛去,請用畫樹狀圖或列表的方法說明這個游戲是否公平.
查看答案和解析>>
科目: 來源: 題型:
【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元.
(1)這兩次各購進這種襯衫多少件?
(2)若第一批襯衫的售價是200元/件,老板想讓這兩批襯衫售完后的總利潤不低于1950元,則第二批襯衫每件至少要售多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點P是邊BC上的動點,現(xiàn)將紙片折疊,使點A與點P重合,折痕與矩形邊的交點分別為E、F,要使折痕始終與邊AB、AD有交點,則BP的取值范圍是_________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.
(1)證明:△BCE≌△CAD;
(2)若AD=15cm,BE=8cm,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,△ABC是直角三角形,∠C=90°,∠CAB的角平分線AE與 AB的垂直平分線DE相交于點E.
(1)如圖2,若點E正好落在邊BC上.
①求∠B的度數
②證明:BC=3DE
(2)如圖3,若點E滿足C、E、D共線.
求證:AD+DE=BC.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數圖象大致是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com