科目: 來(lái)源: 題型:
【題目】從如圖所示的二次函數(shù)()的圖象中,觀察得出了下面5條信息:①;②;③;④;⑤.你認(rèn)為其中正確的信息有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點(diǎn)E在AB上,過(guò)點(diǎn)E作EF⊥BC,點(diǎn)G在FE的延長(zhǎng)線上,且GA=GE.
(1)求證:AG與⊙O相切.
(2)若AC=6,AB=8,BE=3,求線段OE的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AD、AE分別平分∠BAC和△BAC的外角∠BAF,且分別交圓于點(diǎn)D、F,連接DE,CD,DE與BC相交于點(diǎn)G.
(1)求證:DE是△ABC的外接圓的直徑;
(2)設(shè)OG=3,CD=,求⊙O的半徑.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,E是半圓周上的三等分點(diǎn),直徑BC=2,AD⊥BC,垂足為D,連接BE交AD于F,過(guò)A作AG∥BE交BC于G.
(1)判斷直線AG與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)求線段AF的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四邊形是正方形,是等邊三角形,為對(duì)角線(不含點(diǎn))上任意一點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接.
(1)證明:;
(2)當(dāng)點(diǎn)在何處時(shí),的值最小,并說(shuō)明理由;
(3)當(dāng)的最小值為時(shí),則正方形的邊長(zhǎng)為___________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】5個(gè)同樣大小的正方形紙片擺放成“十”字型,按圖1所示的方法分割后可拼接成一個(gè)新的正方形.按照此種做法解決下列問(wèn)題:
(1)5個(gè)同樣大小的矩形紙片擺放成圖2形式,請(qǐng)將其分割并拼接成一個(gè)平行四邊形.要求:在圖2中畫(huà)出并指明拼接成的平行四邊形(畫(huà)出一個(gè)符合條件的平行四邊形即可);
(2)如圖3,在面積為1的平行四邊形中,點(diǎn)分別是邊的中點(diǎn),分別連結(jié)得到一個(gè)新的平四邊形.則平行四邊形的面積為___________(在圖3中畫(huà)圖說(shuō)明).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)O,AC⊥AB,AB=,且AC:BD=2:3.
(1)求AC的長(zhǎng);
(2)求△AOD的面積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】Rt△ABC中,AB=AC,點(diǎn)D為BC中點(diǎn).∠MDN=900,∠MDN繞點(diǎn)D旋轉(zhuǎn),DM、DN分別與邊AB、AC交于E、F兩點(diǎn).下列結(jié)論
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD與EF可能互相平分,
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy中,直線ykxb與 x軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖像相交于點(diǎn) A(1,8)、B(m,2).
(1)求該反比例函數(shù)和直線y kxb的表達(dá)式;
(2)求證:ΔOBC為直角三角形;
(3)設(shè)∠ACO=α,點(diǎn)Q為反比例函數(shù)在第一象限內(nèi)的圖像上一動(dòng)點(diǎn),且滿足90°-α<∠QOC<α,求點(diǎn)Q的橫坐標(biāo)q的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com