科目: 來源: 題型:
【題目】如圖,△ABC中,AB=BC,BD⊥AC于點D,∠FAC=∠ABC,且∠FAC在AC下方.點P,Q分別是射線BD,射線AF上的動點,且點P不與點B重合,點Q不與點A重合,連接CQ,過點P作PE⊥CQ于點E,連接DE.
(1)若∠ABC=60°,BP=AQ.
①如圖1,當點P在線段BD上運動時,請直接寫出線段DE和線段AQ的數量關系和位置關系;
②如圖2,當點P運動到線段BD的延長線上時,試判斷①中的結論是否成立,并說明理由;
(2)若∠ABC=2α≠60°,請直接寫出當線段BP和線段AQ滿足什么數量關系時,能使(1)中①的結論仍然成立(用含α的三角函數表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖在平面直角坐標系中,一次函數的圖象與軸交于點,與軸交于點,二次函數的圖象經過,兩點,且與軸的負半軸交于點,動點在直線下方的二次函數圖象上.
(1)求二次函數的表達式;
(2)如圖1,連接,,設的面積為,求的最大值;
(3)如圖2,過點作于點,是否存在點,使得中的某個角恰好等于的2倍?若存在,直接寫出點的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明在課外研究中,設計如下題目:直線過點,,直線與曲線交于點.
(1)求直線和曲線的關系式.(圖1)
(2)小明發(fā)現曲線關于直線對稱,他把曲線與直線的交點叫做曲線的頂點.(圖2)
①直接寫出點的坐標;
②若點從點出發(fā)向上運動,運動到時停止,求此時的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化。某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調查,根據學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調查結果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖。請你根據圖中提供的信息完成下列問題:
(1)求被調查學生的人數,并將條形統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中的A等對應的扇形圓心角的度數;
(3)已知該校有1500名學生,估計該校學生對政策內容了解程度達到A等的學生有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】草莓是種老少皆宜的食品,深受市民歡迎.今年3月份,甲,乙兩超市分別用3000元以相同的進價購進質量相同的草莓.甲超市銷售方案是:將草莓按大小分類包裝銷售,其中大草莓400千克,以進價的2倍價格銷售,剩下的小草莓以高于進價的10%銷售.乙超市銷售方案是:不將草莓按大小分類,直接包裝銷售,價格按甲超市大、小兩種草莓售價的平均數定價.若兩超市將草莓全部售完,其中甲超市獲利2100元(其他成本不計).
(1)草莓進價為每千克多少元?
(2)乙超市獲利多少元?并比較哪種銷售方式更合算.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形中,為的中點,的垂直平分線分別交,及的延長線于點,,,連接,,,連接并延長交于點.則下列結論中:①;②;③;④;⑤.正確結論的個數有( )
A.2B.3C.4D.5
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A(﹣1,0),B(3,0),交y軸的負半軸于C,頂點為D.下列結論:①2a+b=0;②2c<3b;③當m≠1時,a+b<am2+bm;④當△ABD是等腰直角三角形時,則a= ;⑤當△ABC是等腰三角形時,a的值有3個.其中正確的有( 。﹤.
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,∠ABC=2∠ACB,BD平分∠ABC交AC于點D.
(1)如圖(1),若AB=3,AC=5,求AD的長;
(2)如圖(2),過點A分別作AC,BD的垂線,分別交BC,BD于點E,F.
①求證:∠ABC=∠EAF;
②求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果拋物線C1的頂點在拋物線C2上,拋物線C2的頂點也在拋物線C1上,那么我們稱拋物線C1與C2為“互相關聯”的拋物線.如圖,已知拋物線與是“互相關聯”的拋物線,點A,B分別是拋物線C1,C2的頂點,拋物線C2經過點D(6,-1).
(1)直接寫出點A,B的坐標和拋物線C2的解析式.
(2)拋物線C2上是否存在點E,使得△ABE是以AB為直角邊的直角三角形?如果存在,請求出點E的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com