科目: 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=2BC,點D在邊AC上,連接BD,過A作BD的垂線交BD的延長線于點E.
(1)若M,N分別為線段AB,EC的中點,如圖1,求證:MN⊥EC;
(2)如圖2,過點C作CF⊥EC交BD于點F,求證:AE=2BF;
(3)如圖3,以AE為一邊作一個角等于∠BAC,這個角的另一邊與BE的延長線交于P點,O為BP的中點,連接OC,求證:OC=(BE﹣PE).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+bx+c過A(2,0)、C(0,4)兩點.
(1)分別求該拋物線和直線AC的解析式;
(2)橫坐標(biāo)為m的點P是直線AC上方的拋物線上一動點,△APC的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否有最大值?若存在,求出最大值,若不存在,請說明理由.
(3)點M是直線AC上一動點,ME垂直x軸于E,在y軸(原點除外)上是否存在點F,使△MEF為等腰直角三角形?若存在,直接寫出對應(yīng)的點F,M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在一面靠墻的空地上用長24m的籬笆,圍成中間隔有兩道籬笆的長方形花圃,設(shè)花圃的一邊AB為x(m),面積S(m2).
(1)求S與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)若墻的最大可用長度為8m,求圍成花圃的最大面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,函數(shù)的圖象與函數(shù)()的圖象交于點A(2,1)、B,與y軸交于點C(0,3).
(1)求函數(shù)的表達(dá)式和點B的坐標(biāo);
(2)觀察圖象,比較當(dāng)x>0時與的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC,
(1)按如下步驟尺規(guī)作圖(保留作圖痕跡):
①作AD平分∠BAC,交BC于D;
②作AD的垂直平分線MN分別交AB,AC于點E、F;
(2)連接DE、DF.若BD=12,AF=8,CD=6,求BE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】市政府為改善居民的居住環(huán)境,修建了環(huán)境幽雅的環(huán)城公園,為了給公園內(nèi)的草評定期噴水,安裝了一些自動旋轉(zhuǎn)噴水器,如圖所示,設(shè)噴水管高出地面1.5m,在處有一個自動旋轉(zhuǎn)的噴水頭,一瞬間噴出的水流呈拋物線狀.噴頭與水流最高點的連線與地平面成的角,水流的最高點離地平面距離比噴水頭離地平面距離高出2m,水流的落地點為.在建立如圖所示的直角坐標(biāo)系中:
(1)求拋物線的函數(shù)解析式;
(2)求水流的落地點到點的距離是多少m?
查看答案和解析>>
科目: 來源: 題型:
【題目】以長為2的線段為邊作正方形ABCD,取AB的中點P,連接PD,在BA的延長線上取點F,使PF=PD,以AF為邊作正方形AMEF,點M在AD上,如圖所示.
(1)求AM、DM的長;
(2)求證:AM2=ADDM.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,把以格點為頂點的三角形稱為格點三角形(每個小方格都是邊長為1的正方形).圖中△ABC是格點三角形,點A,B,C的坐標(biāo)分別是(﹣4,﹣1),(﹣2,﹣3),(﹣1,﹣2).
(1)以O為旋轉(zhuǎn)中心,把△ABC繞O點順時針旋轉(zhuǎn)90°后得到△A1B1C1,畫出△A1B1C1;
(2)以O為位似中心,在第一象限內(nèi)把△ABC放大2倍后得到△A2B2C2,畫出△A2B2C2;
(3)△ABC內(nèi)有一點P(a,b),寫出經(jīng)過(2)位似變換后P的對應(yīng)點P1的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形紙片ABCD中,AB=10,CD=2,AD=BC=5,∠A=∠B,現(xiàn)將紙片沿EF折疊,使點A的對應(yīng)點A′落在邊AB上,連接A′C,如果△A′BC恰好是以AC為腰的等腰三角形,則AE的長是___.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點A是x軸負(fù)半軸上一個定點,點P是函數(shù)上一個動點,軸于點B,當(dāng)點P的橫坐標(biāo)逐漸增大時,四邊形OAPB的面積將會
A. 先增后減 B. 先減后增 C. 逐漸減小 D. 逐漸增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com