科目: 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點(diǎn)C,過(guò)點(diǎn)F作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D.
(1)已知∠A=α,求∠D的大。ㄓ煤α的式子表示);
(2)取BE的中點(diǎn)M,連接MF,請(qǐng)補(bǔ)全圖形;若∠A=30°,MF=,求⊙O的半徑.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知四邊形ABCD為菱形,點(diǎn)E、F、G、H分別為各邊中點(diǎn),判斷E、F、G、H四點(diǎn)是否在同一個(gè)圓上,如果在同一圓上,找到圓心,并證明四點(diǎn)共圓;如果不在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】要修建一個(gè)圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個(gè)噴頭,使噴出的拋物線形水柱在與水池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離中心3m.
(1)在給定的坐標(biāo)系中畫出示意圖;
(2)求出水管的長(zhǎng)度.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.《九章算術(shù)》中記
載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個(gè)圓柱截面示意圖(如圖②),其中BO⊥CD于點(diǎn)A,求間徑就是要求⊙O的直徑.再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____寸(一尺等于十寸),通過(guò)運(yùn)用有關(guān)知識(shí)即可解決這個(gè)問(wèn)題.請(qǐng)你補(bǔ)全題目條件,并幫助小智求出⊙O的直徑.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知拋物線y=x2﹣2x﹣8.
(1)用配方法把y=x2﹣2x﹣8化為y=(x﹣h)2+k形式;
(2)并指出:拋物線的頂點(diǎn)坐標(biāo)是 ,拋物線的對(duì)稱軸方程是 ,拋物線與x軸交點(diǎn)坐標(biāo)是 ,當(dāng)x 時(shí),y隨x的增大而增大.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過(guò)圓外一點(diǎn)作圓的切線.
已知:P為⊙O外一點(diǎn).
求作:經(jīng)過(guò)點(diǎn)P的⊙O的切線.
小敏的作法如下:
如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C;
(2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O于A,B兩點(diǎn);
(3)作直線PA,PB.所以直線PA,PB就是所求作的切線.
老師認(rèn)為小敏的作法正確.
請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是_____;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】二次函數(shù)y=2x2﹣8x+m滿足以下條件:當(dāng)﹣2<x<﹣1時(shí),它的圖象位于x軸的下方;當(dāng)6<x<7時(shí),它的圖象位于x軸的上方,則m的值為( 。
A. 8 B. ﹣10 C. ﹣42 D. ﹣24
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)C(O,4),與軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(-2,0),拋物線的對(duì)稱軸與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.
(1)求拋物線的解析式;
(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)平行于DE的一條動(dòng)直線Z與直線BC相交于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(1)如圖 1,在邊長(zhǎng)為 1 個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,ABC 的三個(gè)頂點(diǎn)均在格點(diǎn)上.現(xiàn)將ABC 繞點(diǎn) A 按順時(shí)針方向旋轉(zhuǎn) 90°,點(diǎn) B 的對(duì)應(yīng)點(diǎn)為B′,點(diǎn) C 的對(duì)應(yīng)點(diǎn)為C′, 連接 BB′,如圖所示則∠AB′B= .
(2)如圖 2,在等邊ABC 內(nèi)有一點(diǎn) P,且 PA=2,PB= ,PC=1,如果將△BPC 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn) 60°得出△ABP′,求∠BPC 的度數(shù)和 PP′的長(zhǎng);
(3)如圖3,在中,,,,點(diǎn)O為內(nèi)一點(diǎn),連接AO,BO,CO,且,求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】學(xué)以致用:?jiǎn)栴}1:怎樣用長(zhǎng)為的鐵絲圍成一個(gè)面積最大的矩形?
小學(xué)時(shí)我們就知道結(jié)論:圍成正方形時(shí)面積最大,即圍成邊長(zhǎng)為的正方形時(shí)面積最大為.請(qǐng)用你所學(xué)的二次函數(shù)的知識(shí)解釋原因.
思考驗(yàn)證:?jiǎn)栴}2:怎樣用鐵絲圍一個(gè)面積為且周長(zhǎng)最小的矩形?
小明猜測(cè):圍成正方形時(shí)周長(zhǎng)最。
為了說(shuō)明其中的道理,小明翻閱書籍,找到下面的材料:
結(jié)論:在、均為正實(shí)數(shù))中,若為定值,則,當(dāng)且僅當(dāng)時(shí),有最小值.
均為正實(shí)數(shù))的證明過(guò)程:
對(duì)于任意正實(shí)數(shù)、,,,
,當(dāng)且僅當(dāng)時(shí),等號(hào)成立。
解決問(wèn)題:
(1)若,則 (當(dāng)且僅當(dāng) 時(shí)取“” ;
(2)運(yùn)用上述結(jié)論證明小明對(duì)問(wèn)題2的猜測(cè);
(3)當(dāng)時(shí),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com