科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.
(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下的公式:
①cos(α+β)=cosαcosβ﹣sinαsinβ;sin(α+β)=sinαcosβ+cosαsinβ;
②tan(α+β)=.
③利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如tan105°=tan(45°+60°)=====.
根據(jù)上面的知識,你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實際問題:
(1)求cos75°的值;
(2)如圖,直升機在一建筑物CD上方的點A處測得建筑物頂端點D的俯角α為60°,底端點C的俯角β為75°,此時直升機與建筑物CD的水平距離BC為42m,求建筑物CD的高.
查看答案和解析>>
科目: 來源: 題型:
【題目】周老師為了了解學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進行了為期半年的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類A:優(yōu);B:良;C:中;D:差.依據(jù)調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,周老師一共調(diào)查了______名學(xué)生;
(2)將統(tǒng)計圖補充完整;
(3)為了共同進步,周老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進行“一對一”幫扶,請用列表法或畫樹形圖的方法求所選的兩位同學(xué)恰好是兩位女同學(xué)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于的一元二次方程:.
(1)求證:對于任意實數(shù),方程都有實數(shù)根;
(2)當(dāng)為何值時,方程的兩個根互為相反數(shù)?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達式為y=x,點O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長_____
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設(shè)E點的運動時間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時,t的值為
A、2 B、2.5或3.5 C、3.5或4.5 D、2或3.5或4.5
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結(jié)論正確的是( 。
A.b2﹣4ac<0
B.2a+b=0
C.a+b+c<0
D.關(guān)于x的方程ax2+bx+c=﹣1有兩個不相等的實數(shù)根
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點坐標(biāo)為,直線與二次函數(shù)的圖象交于,兩點,其中點的坐標(biāo)為,點在軸上.
(1)求的值及這個二次函數(shù)的解析式;
(2)在軸上找一點,使的周長最小,并求出此時點坐標(biāo);
(3)若是軸上的一個動點,過作軸的垂線分別于直線和二次函數(shù)的圖象交于,兩點.當(dāng)時,求線段的最大值;
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.
(1)求一次函數(shù)的表達式;
(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com