設(shè)f(x)=x-
4x

(1)討論f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義證明.
分析:(1)利用奇偶性的定義進(jìn)行判斷;
(2)利用函數(shù)單調(diào)性的定義進(jìn)行判斷、證明.
解答:解:(1)函數(shù)的定義域?yàn)閧x|x≠0}.
因?yàn)閒(-x)=-x-
4
-x
=-(x-
4
x
)=-f(x),
所以f(x)是奇函數(shù).
(2)f(x)在(0,+∞)上是增函數(shù).
證明:設(shè)0<x1<x2,則f(x1)-f(x2)=(x1-
4
x1
)-(x2-
4
x2
)=
(x1-x2)(x1x2+4)
x1x2

因?yàn)?<x1<x2,所以x1-x2<0,x1x2>0,x1x2+4>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),
故f(x)在(0,+∞)上單調(diào)遞增.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性,定義法是解決該類(lèi)問(wèn)題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

.設(shè)f(x)=x2-4x-4,x∈[t,t+1](t∈R),求函數(shù)f(x)的最小值的解析式,并作出此解析式的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值;
(3)討論方程
f(x)
2x
+x-
1
2
-alnx=0
的解的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為二次函數(shù),且f(1)=1,f(x+1)-f(x)=1-4x.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(x)-x-a,若函數(shù)g(x)在實(shí)數(shù)R上沒(méi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)f(x)=x-
4
x

(1)討論f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案