方程(1+4k)x-(2-3k)y+(2-14k)=0所確定的直線必經(jīng)過點


  1. A.
    (2,2)
  2. B.
    (-2,2)
  3. C.
    (-6,2)
  4. D.
    數(shù)學公式
A
分析:直線過定點,直線是直線系,按k集項;解方程組,求得得交點坐標即定點的坐標.
解答:方程(1+4k)x-(2-3k)y+(2-14k)=0,化為(x-2y+2)+k(4x+3y-14)=0

故選A.
點評:本題考查過定點的直線系方程,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

方程(1+4k)x-(2-3k)y+(2-14k)=0所確定的直線必經(jīng)過點( 。
A、(2,2)
B、(-2,2)
C、(-6,2)
D、(
34
5
,
22
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線(1+4k)x-(2-3k)y+(2+8k)=0(k∈R)所經(jīng)過的定點F,直線l:x=-4與x軸的交點是圓C的圓心,圓C恰好經(jīng)過坐標原點O,設G是圓C上任意一點.
(1)求點F和圓C的方程;
(2)若直線FG與直線l交于點T,且G為線段FT的中點,求直線FG被圓C所截得的弦長;
(3)在平面上是否存在一點P,使得
GF
GP
=
1
2
?若存在,求出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所經(jīng)過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.則橢圓C的標準方程為
x2
25
+
y2
16
=1
x2
25
+
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復習(第7章 直線與圓的方程):7.7 直線與圓練習(解析版) 題型:選擇題

方程(1+4k)x-(2-3k)y+(2-14k)=0所確定的直線必經(jīng)過點( )
A.(2,2)
B.(-2,2)
C.(-6,2)
D.(

查看答案和解析>>

同步練習冊答案