【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長的棱的棱長為( )

A. 2 B. C. D. 3

【答案】D

【解析】由三視圖可得幾何體的直觀圖如圖所示:

有: ABC, ABC, , 邊上的高為2,

所以.

該三棱錐最長的棱的棱長為.

故選D.

點睛; 思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年10月份鄭州市進行了高三學(xué)生的體育學(xué)業(yè)水平測試,為了考察高中學(xué)生的身體素質(zhì)比情況,現(xiàn)抽取了某校1000名(男生800名,女生200名)學(xué)生的測試成績,根據(jù)性別按分層抽樣的方法抽取100名進行分析,得到如下統(tǒng)計圖表:

男生測試情況:

抽樣情況

病殘免試

不合格

合格

良好

優(yōu)秀

人數(shù)

5

10

15

47

女生測試情況

抽樣情況

病殘免試

不合格

合格

良好

優(yōu)秀

人數(shù)

2

3

10

2

1)現(xiàn)從抽取的1000名且測試等級為優(yōu)秀的學(xué)生中隨機選出兩名學(xué)生,求選出的這兩名學(xué)生恰好是一男一女的概率;

2)若測試等級為良好優(yōu)秀的學(xué)生為體育達人其它等級的學(xué)生(含病殘免試非體育達人,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并回答能否在犯錯誤的概率不超過0.010的前提下認為是否為體育達人與性別有關(guān)?

男性

女性

總計

體育達人

非體育達人

總計

臨界值表:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

:( 其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若時取到極值,求的值及的圖象在處的切線方程;

(2)若時恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且以兩焦點為直徑的圓的內(nèi)接正方形面積為2.

(1)求橢圓的標準方程;

(2)若直線 與橢圓相交于, 兩點,在軸上是否存在點,使直線的斜率之和為定值?若存在,求出點坐標及該定值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長的棱的棱長為( )

A. 3 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,動點到點的距離和它到直線的距離相等,記點的軌跡為.

(Ⅰ)求得方程;

(Ⅱ)設(shè)點在曲線上, 軸上一點(在點右側(cè))滿足.平行于的直線與曲線相切于點,試判斷直線是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=3,且an+1﹣3an=3n,(n∈N*),數(shù)列{bn}滿足bn=3﹣nan

(1)求證:數(shù)列{bn}是等差數(shù)列;

(2)設(shè),求滿足不等式的所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱柱中,已知側(cè)面.

1)求證 平面

2是棱長上的一點,若二面角的正弦值為,的長.

查看答案和解析>>

同步練習冊答案