【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到點(diǎn)的距離和它到直線的距離相等,記點(diǎn)的軌跡為.
(Ⅰ)求得方程;
(Ⅱ)設(shè)點(diǎn)在曲線上, 軸上一點(diǎn)(在點(diǎn)右側(cè))滿足.平行于的直線與曲線相切于點(diǎn),試判斷直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.
【答案】(1) (2)直線過定點(diǎn).
【解析】試題分析:(Ⅰ)根據(jù)拋物線的定義可得得方程;
(Ⅱ)設(shè),則,與拋物線相切的直線為,與拋物線聯(lián)立得,由得,得點(diǎn),進(jìn)而求出直線AD的方程即可得定點(diǎn).
試題解析:
(Ⅰ)因?yàn)閯?dòng)點(diǎn)到點(diǎn)的距離和它到直線的距離相等,
所以動(dòng)點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),直線為準(zhǔn)線的拋物線.
設(shè)的方程為,
則,即.
所以的軌跡方程為.
(Ⅱ)設(shè),則,
所以直線的斜率為.
設(shè)與平行,且與拋物線相切的直線為,
由得,
由得,
所以,所以點(diǎn).
當(dāng),即時(shí),直線的方程為,
整理得,
所以直線過點(diǎn).
當(dāng),即時(shí),直線的方程為,過點(diǎn),
綜上所述,直線過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的焦點(diǎn)為,橢圓的中心在原點(diǎn),為其右焦點(diǎn),點(diǎn)為曲線和在第一象限的交點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為拋物線上的兩個(gè)動(dòng)點(diǎn),且使得線段的中點(diǎn)在直線上,
為定點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若對任意,不等式的解集為空集,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當(dāng)x>0時(shí),
f(x)=.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線y=t與曲線C:y=x(x﹣3)2的三個(gè)交點(diǎn)分別為A(a,t),B(b,t),C(c,t),且a<b<c.現(xiàn)給出如下結(jié)論:
①abc的取值范圍是(0,4);
②a2+b2+c2為定值;③a+b+c=6
其中正確結(jié)論的為_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為對考生的月考成績進(jìn)行分析,某地區(qū)隨機(jī)抽查了名考生的成績,根據(jù)所得數(shù)據(jù)畫了如下的樣本頻率分布直方圖.
(1)求成績在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析成績與班級、學(xué)校等方面的關(guān)系,必須按成績再從這人中用分層抽樣方法抽取出人作出進(jìn)一步分析,則成績在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形中, , , , 、分別是邊、上的點(diǎn),且,沿將折起并連接成如圖的多面體,折后.
(Ⅰ)求證: ;
(Ⅱ)若折后直線與平面所成角的正弦值是,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若不等式恒成立,則實(shí)數(shù)的取值范圍;
(2)在(1)中, 取最小值時(shí),設(shè)函數(shù).若函數(shù)在區(qū)間上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)證明不等式: (且).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com