已知數(shù)列是公差為-2的等差數(shù)列,是與的等比中項(xiàng)。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求的最大值。
(1);(2)12;
解析試題分析:(1)由是與的等比中項(xiàng)得一個(gè)式子,又公差為代入前面列出的式子中即可求出首項(xiàng),進(jìn)而得出通項(xiàng)公式;(2)由(1)得通項(xiàng)公式,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),由此得或最大;
試題解析:解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/29/ec/294ec1927dc1f2626e2360c478faba1c.png" style="vertical-align:middle;" />是與的等比中項(xiàng),
所以。 2分
因?yàn)閿?shù)列是公差為-2的等差數(shù)列,
所以, 4分
解得。 6分
所以。 8分
(2)解,即,得, 10分
故數(shù)列的前3項(xiàng)大于零,第4項(xiàng)等于零,以后各項(xiàng)均小于零。
所以,當(dāng)或時(shí),取得最大值。 11分
。
所以的最大值為12。 13分
考點(diǎn):等差數(shù)列、等比數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列的前項(xiàng)和為,且.
(1)數(shù)列滿足:求數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng)公差且分別是等比數(shù)列的
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意正整數(shù)均有成立,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)函數(shù)的零點(diǎn)從小到大排列,記為數(shù)列,求的前項(xiàng)和;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)點(diǎn)是函數(shù)與圖象的交點(diǎn),若直線同時(shí)與函數(shù),的圖象相切于點(diǎn),且
函數(shù),的圖象位于直線的兩側(cè),則稱直線為函數(shù),的分切線.
探究:是否存在實(shí)數(shù),使得函數(shù)與存在分切線?若存在,求出實(shí)數(shù)的值,并寫出分切線方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com