19.對(duì)數(shù)式log(2x-3)(x-1)中實(shí)數(shù)x的取值范圍是($\frac{3}{2}$,2)∪(2,+∞).

分析 根據(jù)對(duì)數(shù)函數(shù)的定義和性質(zhì)即可得到結(jié)論.

解答 解:由$\left\{\begin{array}{l}{x-1>0}\\{2x-3>0}\\{2x-3≠1}\end{array}\right.$解得x>$\frac{3}{2}$且x≠2,
故實(shí)數(shù)x的取值范圍是($\frac{3}{2}$,2)∪(2,+∞),
故答案為:($\frac{3}{2}$,2)∪(2,+∞)

點(diǎn)評(píng) 本題主要考查函數(shù)的定義域?yàn)榈那蠼猓鶕?jù)對(duì)數(shù)函數(shù)成立的條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}滿足an+1=an-2an+1an,an≠0且a1=1
(1)求證:數(shù)列$\{\frac{1}{a_n}\}$是等差數(shù)列,并求出{an}的通項(xiàng)公式;
(2)令bn=anan+1,求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知雙曲線$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1與$\frac{{x}^{3}}{8}$-$\frac{{y}^{2}}{4}$=1有相同的離心率,則m=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-4x,x<\frac{1}{2}\\{log_{\frac{1}{2}}}(2x+1),x≥\frac{1}{2}\end{array}\right.$
(1)求$f(\frac{3}{2}),f({f(\frac{1}{2})})$的值;
(2)求不等式f(x)>-3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)a=0.5${\;}^{\frac{1}{2}}$,b=0.9${\;}^{\frac{1}{2}}$,c=log50.3,則a,b,c的大小關(guān)系是(  )
A.a>c>bB.c>a>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=x2+2(a-1)x+b在區(qū)間(-∞,4]上遞減,則a的取值范圍是( 。
A.[-3,+∞)B.(-∞,-3]C.(-∞,5]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)$f(x)=x-\frac{1}{x}$,對(duì)任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,則實(shí)數(shù)m的取值范圍是 (  )
A.m<-1或0<m<1B.0<m<1C.m<-1D.-1<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長(zhǎng)度均為n-m,其中n>m.
(1)若關(guān)于x的不等式ax2+12x-3>0的解集構(gòu)成的區(qū)間的長(zhǎng)度為$2\sqrt{3}$,求實(shí)數(shù)a的值;
(2)求關(guān)于x的不等式x2-3x+(sinθ+cosθ)<0(θ∈R)的解集構(gòu)成的區(qū)間的長(zhǎng)度的取值范圍;
(3)已知關(guān)于x的不等式組$\left\{\begin{array}{l}\frac{7}{x+2}>1\\{log_2}x+{log_2}({tx+2t})<3\end{array}\right.$的解集構(gòu)成的各區(qū)間長(zhǎng)度和為5,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算與化簡(jiǎn)
(1)(1$\frac{1}{2}$)0-(1-0.5-2)÷($\frac{27}{8}$)${\;}^{\frac{2}{3}}$
(2)$\sqrt{2\sqrt{2\sqrt{2}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案