16.已知集合A={x|x2-1<0},B=$\left\{{x|\frac{x-2}{x}<0}\right\}$,則A∩B( 。
A.(-∞,2)B.(0,1)C.(-2,2)D.(-∞,1)

分析 解出集合A與B,然后求解即可.

解答 解:∵A={x|x2-1<0}={x|-1<x<1},
B=$\left\{{x|\frac{x-2}{x}<0}\right\}$={x|0<x<2},
∴A∩B={X|0<x<1},
故選:B.

點評 本題主要考查集合的子交并補集運算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知二項式為(x-$\frac{1}{{x}^{2}}$)9,求:
(1)展開式的常數(shù)項
(2)含x3的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.把極坐標方程ρ=sinθ+cosθ化成直角坐標標準方程是(x-$\frac{1}{2}$)2+(y-$\frac{1}{2}$)2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某海濱浴場的海浪高度y(米)是時間t(0≤t≤24),單位:小時)的函數(shù),記為y=f(x),下表是某日各時的浪高數(shù)據(jù):經(jīng)長期觀察,y=f(t)的曲線可以近似地看出是函數(shù)y=Acos(ωt)+k(A>0)的曲線.
(1)求函數(shù)y=Acos(ωt)+k(A>0)的解析式;
(2)浴場規(guī)定:當海浪高度高于1米時才對沖浪愛好者開放,根據(jù)以上數(shù)據(jù),當天上午8:00時至晚上20:00時之間可供沖浪愛好者沖浪的時間約為多少時?
t時03691215182124
y米1.51.00.50.981.51.010.50.991.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設a∈R,函數(shù)f(x)=$\frac{x-a}{(x+a)^{2}}$.
(1)若函數(shù)f(x)在(0,f(0))處的切線與直線y=3x-2平行,求a的值;
(2)若對于定義域內的任意x1,總存在x2使得f(x2)<f(x1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,若(a+b)(sinA-sinB)=c(sinA-sinC).
(1)求角B的大。
(2)設BC中點為D,且AD=$\sqrt{3}$,求a+2c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{A}{2}$,sin$\frac{A}{2}$),$\overrightarrow{n}$=(-cos$\frac{B}{2}$,$\sqrt{3}$sin$\frac{B}{2}$),且滿足$\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{\sqrt{3}}{2}$.
(Ⅱ)求角C的大;
(Ⅱ)若△ABC的面積為$\frac{\sqrt{3}}{4}$,且a-b=2,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={x∈R|-2<x<1},B={x∈R|x2-2x<0},那么A∩B=( 。
A.(-2,0)B.(-2,1)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}滿足:a1=3,$\sqrt{{a_{n+1}}+1}-\sqrt{{a_n}+1}=1({n∈{N^+}})$.
(1)求數(shù)列{an}的通項公式;
(2)設bn=(-1)nan(n∈N+),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案