設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,z1=1+i,則z1z2=(  )
A、-2iB、2iC、-2D、2
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:通過復(fù)數(shù)的幾何意義先得出z2,再利用復(fù)數(shù)的代數(shù)運(yùn)算法則進(jìn)行計(jì)算.
解答: 解:z1=1+i在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)為(1,1),
它關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為(-1,-1),
故z2=-1-i,
z1z2=-(1+i)2=-2i
故選:A.
點(diǎn)評(píng):本題復(fù)數(shù)的運(yùn)算法則、幾何意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列通項(xiàng)公式:an=1+cos
2
,則a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z為復(fù)數(shù),則“|z|=1”是“z+
1
z
是實(shí)數(shù)”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x||x-1|<1},B={x|y=
1
1-x
},則圖中陰影部分表示的集合是( 。
A、{x|x≥1}
B、{x|1≤x<2}
C、{x|0<x≤1}
D、{x|1≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α為銳角,若cos(α+
π
6
)=
4
5
,則sin(α-
π
12
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
(
1
3
)
x
-1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},a1=3,前n項(xiàng)和為Sn,又等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,若b2+S2=12,q=
S2
b2

(1)求an與bn;
(2)設(shè)cn=an+bn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足a1a2…an=2bn-n,若{an}為等比數(shù)列,且a1=1,b2=b1+2.
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=
1
an
-
1
bn
(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知直線l的極坐標(biāo)方程 為ρsin(θ+
π
4
)=1,圓C的圓心是C(1,
π
4
),半徑為1,求:
(1)圓C的極坐標(biāo)方程;
(2)直線l被圓C所截得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案