14.已知點P(x,y)滿足$\left\{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥1}\end{array}\right.$,則z=$\frac{y}{x}$的最大值為3.

分析 畫出滿足條件的平面區(qū)域,由z=$\frac{y}{x}$表示過平面區(qū)域的點(x,y)與(0,0)的直線的斜率,通過圖象即可得出.

解答 解:畫出滿足條件的平面區(qū)域,
如圖示:
由z=$\frac{y}{x}$表示過平面區(qū)域的點(x,y)與(0,0)的直線的斜率,由$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$,得A(1,3),
顯然直線過A(1,3)時,z取得最大值,z=$\frac{y}{x}$=3,
故答案為:3.

點評 本題考查了簡單的線性規(guī)劃問題,利用數(shù)形結(jié)合判斷x,y的取值關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x|,g(x)=m-|x-3|.
(1)解關(guān)于的不等式g(f(x))+1-m>0;
(2)已知c>0,f(a)<c,f(b)<c,求證:$\frac{f(a+b)}{f({c}^{2}+ab)}$<$\frac{1}{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是增函數(shù).令a=f(sin50°),b=f[cos(-50°)],c=f(-tan50°),則( 。
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥1}\\{x+c,x<1}\end{array}\right.$,則“c=-1”是“函數(shù)在R上單調(diào)遞增”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|-3≤x≤2},集合B={x|1-m≤x≤3m-1}.
(1)當m=3時,求A∩B,A∪B;   
(2)若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)α為第二象限角,則$\frac{sinα}{cosα}$•$\sqrt{\frac{1}{si{n}^{2}a}-1}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=-sin2x+asinx+bcosx是偶函數(shù),且f(π)=-1
(1)求f(x);
(2)已知θ∈(0,$\frac{π}{2}$),且tanθ=$\sqrt{2}$,若對任意x∈[-$\frac{π}{2}$,0],不等式a≤f(2x+θ)+m≤4b恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一個周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式與單調(diào)遞減區(qū)間;
(2)函數(shù)f(x)的圖象上所有點的橫坐標擴大到原來的2倍,再向右平移$\frac{π}{2}$個單位長度,得到g(x)的圖象,求函數(shù)y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.甲、乙兩人從6門課程中各選修3門,則甲、乙所選的課程中恰有1門相同的選法有180種.

查看答案和解析>>

同步練習(xí)冊答案