4.甲、乙兩人從6門課程中各選修3門,則甲、乙所選的課程中恰有1門相同的選法有180種.

分析 先確定相同的1門,再各自選2門不同的課程,利用乘法原理可得結(jié)論.

解答 解:根據(jù)題意,甲乙所選的課程有1門相同,有C61×C52×C32=180種情況.
故答案為180

點(diǎn)評 本題考查組合公式的運(yùn)用,解題時注意事件之間的關(guān)系,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)P(x,y)滿足$\left\{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥1}\end{array}\right.$,則z=$\frac{y}{x}$的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如果函數(shù)y=3cos(2x+φ)的圖象關(guān)于點(diǎn)$({\frac{4π}{3},0})$,則|φ|的最小值為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知0<a<2,證明:$\frac{1}{a}$+$\frac{4}{2-a}$≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知過原點(diǎn)O的圓x2+y2-2ax=0又過點(diǎn)(4,2),(1)求圓的方程,(2)A為圓上動點(diǎn),求弦OA中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知P是△ABC內(nèi)一點(diǎn),且$5\overrightarrow{AP}-2\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow 0$,則△PAB的面積與△ABC的面積之比等于( 。
A.1:3B.2:3C.1:5D.2:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知A∈α,P∉α,$\overrightarrow{PA}$=(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,x)其中x>0,且|$\overrightarrow{PA|}$|=$\sqrt{3}$,平面α的一個法向量$\overrightarrow n=(0,-\frac{1}{2},-\sqrt{2})$.
(1)求x的值;
(2)求直線PA與平面α所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.祖暅?zhǔn)悄媳背瘯r代的偉大科學(xué)家,5世紀(jì)末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等,現(xiàn)有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( 。
A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在銳角△ABC中,BC=1,∠B=2∠A,AC的取值范圍為( 。
A.$({1,\sqrt{2}})$B.$(0,\sqrt{2}]$C.$({\sqrt{2},\sqrt{3}})$D.$({1,\sqrt{3}})$

查看答案和解析>>

同步練習(xí)冊答案