分析 利用$\frac{1}{a}+\frac{4}{2-a}=\frac{1}{2}×(\frac{1}{a}+\frac{4}{2-a})(a+2-a)$=$\frac{1}{2}$(5+$\frac{2-a}{a}+\frac{4a}{2-a}$)$≥\frac{1}{2}(5+2\sqrt{\frac{2-a}{a}×\frac{4a}{2-a}})=\frac{9}{2}$證明.
解答 解:∵0<a<2,∴2-a>0,
∴$\frac{1}{a}+\frac{4}{2-a}=\frac{1}{2}×(\frac{1}{a}+\frac{4}{2-a})(a+2-a)$=$\frac{1}{2}$(5+$\frac{2-a}{a}+\frac{4a}{2-a}$)$≥\frac{1}{2}(5+2\sqrt{\frac{2-a}{a}×\frac{4a}{2-a}})=\frac{9}{2}$
當$\frac{2-a}{a}=\frac{4a}{2-a}$,即a=$\frac{2}{3}$時,取等號
點評 本題考查了綜合法證明不等式,解題的關(guān)鍵是構(gòu)造均值不等式的形式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{22}{7}$ | B. | $\frac{47}{15}$ | C. | $\frac{51}{16}$ | D. | $\frac{53}{17}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y′=2xcosx-x 2sinx | B. | y′=2xcosx+x 2sinx | ||
C. | y′=x 2cosx-2xsinx | D. | y′=xcosx-x 2sinx |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com