14.函數(shù)y=x 2cosx的導(dǎo)數(shù)為( 。
A.y′=2xcosx-x 2sinxB.y′=2xcosx+x 2sinx
C.y′=x 2cosx-2xsinxD.y′=xcosx-x 2sinx

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則計(jì)算即可

解答 解:y=(x2)′cosx+x2(cosx)′=2xcosx-x2sinx,
故選:A

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算法則,和常見函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知0<a<2,證明:$\frac{1}{a}$+$\frac{4}{2-a}$≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.祖暅?zhǔn)悄媳背瘯r(shí)代的偉大科學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等,現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖去一個(gè)圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個(gè)幾何體為(  )
A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若一個(gè)圓柱的軸截面是一個(gè)面積為4的正方形,則該圓柱的表面積為( 。
A.B.C.$\frac{7π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(2sinx,cosx),$\overrightarrow$=(cosx,2$\sqrt{3}$cosx),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$
(Ι)求函數(shù)f(x)的最小正周期;
(ΙΙ) 當(dāng)$x∈[0,\frac{π}{2}]$時(shí),求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=log2(x2-3x+2)的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1)∪(2,+∞)B.(-∞,1)∪(2,+∞)C.(0,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在銳角△ABC中,BC=1,∠B=2∠A,AC的取值范圍為( 。
A.$({1,\sqrt{2}})$B.$(0,\sqrt{2}]$C.$({\sqrt{2},\sqrt{3}})$D.$({1,\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{5}{4}$sinx,x∈R.
(1)求f($\frac{π}{6}$)的值;
(2)若f(α)=1,α∈(0,$\frac{π}{2}$),求f(2α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD為菱形,O為A1C1與B1D1的交點(diǎn),已知AA1=AB=2,∠BAD=60°;
(1)求證:平面A1BC1⊥平面B1BDD1;
(2)求點(diǎn)O到平面BC1D的距離.

查看答案和解析>>

同步練習(xí)冊答案