已知函數(shù)f(x)=數(shù)學(xué)公式
(1)它是奇函數(shù)還是偶函數(shù)?并給出證明.
(2)它的圖象具有怎樣的對(duì)稱性?
(3)它在(3,+∞)上是增函數(shù)還是減函數(shù)?并用定義證明.

解:(1)此函數(shù)的定義域?yàn)椋?∞,0)∪(0,+∞)
f(-x)==-=-f(x)
∴函數(shù)f(x)為奇函數(shù)
(2)∵函數(shù)f(x)為(-∞,0)∪(0,+∞)上的奇函數(shù)
∴其圖象關(guān)于原點(diǎn)對(duì)稱.
(3)函數(shù)f(x)==x+在(3,+∞)上是增函數(shù)
證明:設(shè)?x1、x2∈(3,+∞),且x1<x2,

=
∵3<x1<x2

∴f(x1)-f(x2)<0
在(3,+∞)上是增函數(shù)
即函數(shù)函數(shù)f(x)=在(3,+∞)上是增函數(shù)
分析:(1)先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再利用奇函數(shù)定義證明函數(shù)為奇函數(shù);(2)奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,偶函數(shù)的圖象關(guān)于y軸對(duì)稱;(3)利用函數(shù)單調(diào)性的定義,先設(shè)?x1、x2∈(3,+∞),且x1<x2,再利用作差法比較f(x1)與f(x2)的大小,從而證明函數(shù)的單調(diào)性
點(diǎn)評(píng):本題考查了奇函數(shù)的定義及其判斷方法,利用函數(shù)單調(diào)性的定義證明函數(shù)單調(diào)性的方法和技巧,作差法比較大。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案