分析 由已知利用同角三角函數(shù)基本關系式可求tanθ,利用兩角和的正切函數(shù)公式即可計算得解.
解答 解:∵2sinθ+cosθ=0,
∴tanθ=-$\frac{1}{2}$,
∴$tan(θ+\frac{π}{4})$=$\frac{tanθ+1}{1-tanθ}$=$\frac{(-\frac{1}{2})+1}{1-(-\frac{1}{2})}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.
點評 本題主要考查了同角三角函數(shù)基本關系式,兩角和的正切函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | -2$\sqrt{3}$ | C. | -6 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $4\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
方案 | a | b | c | d |
一 | 100 | 100 | 100 | 500 |
二 | 100 | 100 | 500 | 500 |
三 | 200 | 200 | 400 | 400 |
方案二 | 方案三 | 合計 | |
男性 | 12 | 48 | 60 |
女性 | 6 | 34 | 40 |
合計 | 18 | 82 | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 |
k0 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4+2$\sqrt{2}$ | C. | 4+4$\sqrt{2}$ | D. | 6+4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{49}{99}$ | B. | $\frac{50}{101}$ | C. | $\frac{51}{103}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com